The distribution of the Estermann function and other quantum modular forms

Number Theory

01 March 17:00 - 18:00

Sandro Bettin - University of Genova

Sandro Bettin (University of Genova) & Sary Drappeau (Aix-Marseille University)

For a rational a/q, the Estermann function is defined as the additive twist of the the square of the Riemann zeta-function,

D(s,a/q) = \sum_{n>0} d(n) e^{2\pi i n a/q} n^{-s}.

It satisfies a functional equation which encodes Voronoi's summation formula.

It is natural to ask how the central values D(1/2,a/q) are distributed as the rational a/q varies. In contrast with the case of multiplicative twists of L-functions, D(s,a/q) does not have an Euler product and thus the usual machinery does not apply. However, we are able to employ the fact that D(1/2,a/q) is a quantum modular form (there is a certain relation between the values at a/q and q/a) to show, using dynamical systems methods, that D(1/2,a/q) is asymptotically distributed as a Gaussian random variable.

Join Zoom Meeting

Meeting ID: 921 756 1880

Join by SIP

Join by H.323
Meeting ID: 921 756 188

Pär Kurlberg
KTH Royal Institute of Technology
Lilian Matthiesen
KTH Royal Institute of Technology
Damaris Schindler
Universität Göttingen


Pär Kurlberg

Lilian Matthiesen


For practical matters at the Institute, send an e-mail to