# The distribution of the Estermann function and other quantum modular forms

#### Number Theory

#### 01 March 17:00 - 18:00

#### Sandro Bettin - University of Genova

**Speakers **

Sandro Bettin (University of Genova) & Sary Drappeau (Aix-Marseille University)

**Abstract**

For a rational a/q, the Estermann function is defined as the additive twist of the the square of the Riemann zeta-function,

D(s,a/q) = \sum_{n>0} d(n) e^{2\pi i n a/q} n^{-s}.

It satisfies a functional equation which encodes Voronoi's summation formula.

It is natural to ask how the central values D(1/2,a/q) are distributed as the rational a/q varies. In contrast with the case of multiplicative twists of L-functions, D(s,a/q) does not have an Euler product and thus the usual machinery does not apply. However, we are able to employ the fact that D(1/2,a/q) is a quantum modular form (there is a certain relation between the values at a/q and q/a) to show, using dynamical systems methods, that D(1/2,a/q) is asymptotically distributed as a Gaussian random variable.

Join Zoom Meeting

https://kva-se.zoom.us/j/9217561880

Meeting ID: 921 756 1880

Join by SIP

9217561880@109.105.112.236

9217561880@109.105.112.235

Join by H.323

109.105.112.236

109.105.112.235

Meeting ID: 921 756 188