Floer homotopy without spectra

Knots, Strings, Symplectic Geometry and Dualities

15 September 14:00 - 15:00

Mohammed Abouzaid - Columbia University

The construction of Cohen-Jones-Segal of Floer homotopy types associated to appropriately oriented flow categories extracts from the morphisms of such a category the data required to assemble an iterated extension of free modules (in an appropriate category of spectra). I will explain a direct (geometric) way for defining the Floer homotopy groups which completely bypasses stable homotopy theory. The key point is to work on the geometric topology side of the Pontryagin-Thom construction. Time permitting, I will also explain joint work in progress with Blumberg for building a spectrum from the new point of view, as well as various generalisations which are relevant to Floer theory.


Click here to watch the seminar

Tobias Ekholm,
Uppsala University
Sergei Gukov
California Institute of Technology, Caltech
Vivek Shende
University of California, Berkeley


Tobias Ekholm


For practical matters at the Institute, send an e-mail to