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FOLIATIONS BY STABLE SPHERES WITH CONSTANT

MEAN CURVATURE FOR ISOLATED SYSTEMS WITH

GENERAL ASYMPTOTICS

LAN-HSUAN HUANG

Abstract. We prove the existence and the uniqueness of a foliation by
surfaces with constant mean curvature for asymptotically flat manifolds
satisfying the Regge-Teitelboim condition at infinity. It is known that
the center of mass is well-defined for manifolds satisfying this condition.
We also show that the foliation is asymptotically concentric, and its
geometric center is equal to the center of mass. The construction of the
foliation generalizes the results of Huisken-Yau, Ye, and Metzger, where
spherically asymptotically flat manifolds and their small perturbations
were studied.

1. Introduction

Whether a foliation of constant mean curvature surfaces uniquely exists
in an exterior region of an asymptotically flat manifold is a fundamental
problem in general relativity. The significance of this problem is that the
foliation provides an intrinsic geometric structure near infinity, supplies a
definition of the center of mass in the setting of general relativity, and has
a relation to the Hawking mass.

Currently, a widely-used definition of asymptotic flatness is expressed in
terms of coordinates outside a compact set in the manifold and requires a
suitable decay rate on the metric. The definition is convenient for calculation
purposes, but it is unnatural and obscures interesting geometry and physics
[Ya82, p.697]. In order to understand the canonical structure of asymptoti-
cally flat manifolds, Yau suggests that a constant mean curvature foliation
is a promising description of asymptotic flatness1. Moreover, once the foli-
ation exists and is unique, one can develop polar coordinates analogous to
the polar coordinates in Euclidean space, and then a canonical concept of
center of mass can been defined. On the other hand, the Hawking mass is
a quantity introduced to capture the energy content of the region bounded
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1Bando, Kasue, and Nakajima [BKN89] provide another geometric description of the
asymptotic flatness using curvature conditions.
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by a two surface N which is defined as follows:

mH(N) =
|N | 12

(16π)
3
2

(
16π −

∫

N
H2 dσ

)
.

Christodoulou and Yau [CY86] have proven that the Hawking mass is non-
negative on a stable surface with constant mean curvature, and Bray [Br01]
has shown that the Hawking mass is monotonically increasing along this
foliation and converges to the ADM mass.

For the existence and the uniqueness of such a foliation, some results
have been achieved for spherically asymptotically flat manifolds which are
asymptotically flat manifolds with metrics of the form

gij(x) =

(
1 +

2m

|x|

)
δij + pij ,

pij(x) = O(|x|−2), ∂αpij(x) = O(|x|−2−|α|). (1.1)

Huisken and Yau [HY96] proved the existence of the foliation assuming the
metric is spherically asymptotically flat and showed the foliation is unique if
each leaf is stable and lies outside a suitable compact set. Using the unique
foliation, they defined the center of mass. Ye [Ye96] used a different approach
and proved the existence of the foliation under the same assumption that the
metric be spherically asymptotically flat, and the uniqueness of the foliation
under slightly different conditions. A more general uniqueness result was
proven by Qing and Tian [QT07]. Metzger [M07] generalized the previous
results to manifolds whose metrics are small perturbations of spherically
asymptotically flat metrics2. However, these results have been limited to
asymptotically flat manifolds with special restrictions on the |x|−1-term of
the metrics. Especially, requiring manifolds to satisfy (1.1) corresponds to
an artificial choice of the time-slice in the space-time. Furthermore, another
notion of the center of mass is defined for asymptotically flat manifolds
satisfying the Regge-Teitelboim condition, so it is desirable to generalize
the previous results to this setting.

In this paper, we show that the foliation indeed exists in the exterior
region of an asymptotically flat manifold satisfying the Regge-Teitelboim
condition when the ADM mass is nonzero, and the foliation is unique un-
der certain assumptions. Most importantly, we not only remove the strong
condition on the |x|−1-term of metrics, but also allow metrics to have more
general decay rates. To clearly state the results, we first provide some defi-
nitions.

A three-manifold M with a Riemannian metric g and a two-tensor K is
called a vacuum initial data set (M, g,K) if g and K satisfy the constraint

2Metzger considered a different foliation {Σ} which is the constant θ foliation where
the expansion θ = H ± P , H is the mean curvature of Σ, and P = trΣK. This foliation
particularizes to the constant mean curvature foliation if one let K = 0.
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equations

Rg − |K|2g + (trg(K))2 = 0,

divg(K)− d(trg(K)) = 0, (1.2)

where Rg is the scalar curvature of M , and trg(K) = gijKij . We use the
Einstein summation convention and sum over repeated indices.

Definition 1.1. Let q ∈ (1/2, 1]. We say (M, g,K) is asymptotically flat
(AF) if it is a vacuum initial data set, and there exist coordinates {x} outside
a compact set, say BR0 , in M such that

gij(x) = δij + hij(x), hij = O(|x|−q) Kij(x) = O(|x|−1−q)

gij,k(x) = O(|x|−1−q) Kij,k(x) = O(|x|−2−q)

gij,kl(x) = O(|x|−2−q) Kij,kl(x) = O(|x|−3−q),

and similarly on higher derivatives.

For AF manifolds, the ADM mass m is defined by

m =
1

16π
lim
r→∞

∫

|x|=r

∑

i,j

(
gij,i − gii,j

)
νjg dσg, (1.3)

where {|x| = r} is the Euclidean sphere, νg is the unit outward normal
vector field with respect to the metric g, and dσg is the volume form of the
induced metric from (M, g,K). Bartnik [B86] proves that the ADM mass is
well-defined when the decay rate q is greater than 1/2. Another equivalent
definition of ADM mass is

m =
1

16π
lim
r→∞

∫

|x|=r

(
RicMij −

1

2
Rggij

)
(−2xi)νjg dσg. (1.4)

Definition 1.2. We say (M, g,K) is asymptotically flat satisfying the Regge-
Teitelboim condition (AF-RT) if (M, g,K) is AF, and g,K satisfy these
asymptotically even/odd conditions

goddij (x) = O(|x|−1−q) Keven
ij (x) = O(|x|−2−q)

(
goddij

)
,k

(x) = O(|x|−2−q)
(
Keven
ij

)
,k

(x) = O(|x|−3−q),

and on higher derivatives, where fodd(x) = f(x) − f(−x) and feven(x) =
f(x)+f(−x), [RT]. Notice that fodd and feven are only defined outside BR0

in which the coordinates are defined.

For (M, g,K) satisfying AF-RT, the center of mass C is defined by

Cα =
1

16πm
lim
r→∞

(∫

|x|=r
xα(gij,i − gii,j)νjgdσg

−
∫

|x|=r
(hiαν

i
g − hiiναg ) dσg

)
. (1.5)
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It is noted that another notion of center of mass analogous to (1.4) using the
three dimensional Einstein tensor and a Euclidean conformal Killing vector
field has been studied and proven to be equivalent to C in [H08]. For the
purpose of this paper, we only consider the above definition.

Our main theorems in this paper are the following:

Theorem 1. If (M, g,K) is AF-RT with q ∈ (1/2, 1], there exists a foliation
by surfaces {ΣR} with constant mean curvature H(ΣR) = (2/R)+O(R−1−q)
in the exterior region of M . Each leaf ΣR is a c0R

1−q-graph over SR(C) and
is strictly stable.

The definition of strictly stable and stable are referred to Definition 3.4.
Also, throughout this article, c and ci are constants independent of R. For
one single surface N , we have the following uniqueness result where the
minimal radius is denoted by r(N) = min{|z| : z ∈ N}.
Theorem 2. Assume (M, g,K) is AF-RT with q ∈ (1/2, 1]. There exists
σ1 so that if N has the following properties:

(1) N is topologically a sphere
(2) N has constant mean curvature H = H(ΣR) where R ≥ σ1

(3) N is stable
(4) r ≥ H−a for some a satisfying (9− q)/(8 + 4q) < a ≤ 1

then N = ΣR for some R.

In Theorem 2, we do not assume that N is a leaf of some foliation. Thus,
in the region M \BH−a(0), ΣR is the only stable surface with constant mean
curvature H(ΣR). In particular, {ΣR} is the only foliation by stable surfaces
with constant mean curvature so that each leaf with mean curvature H lies
inside M \ BH−a(0). It is noted that when the decay rate q = 1, a > 2/3
which is exactly the restriction imposed in [M07], but the size of BH−a(0)
increases as q approaches to 1/2. If we replace the condition on r(N) by
the condition that the maximal radius r̄(N) = max{|z| : z ∈ N} and r(N)
are comparable, we derive a uniqueness result which holds outside a fixed
compact set.

Theorem 3. Assume (M, g,K) is AF-RT with q ∈ (1/2, 1]. There exist c2

and σ2 so that if N has the following properties:

(1) N is topologically a sphere
(2) N has constant mean curvature H = H(ΣR) where R ≥ σ2

(3) N is stable

(4) r̄ ≤ c2(r)
1
a for some a satisfying (9− q)/(8 + 4q) < a ≤ 1

then N = ΣR for some R.

The article is organized as follows. In Section 2, an important identity
relating the mean curvature to the center of mass (2.2) is derived. In Section
3, we prove the existence of the foliation (Theorem 3.1 and Theorem 3.7)
and show its geometric center is equal to the center of mass (Corollary 3.3).
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In Section 4, Theorem 2 and Theorem 3 are proven after certain a priori
estimates are established.

2. Estimates on Surfaces Close to SR(p)

The following three lemmas are computational results. Recall that hij =
gij − δij in Definition 1.1. The first lemma indicates an important identity
relating the mean curvature to the center of mass C. We obtain some es-
timates for Euclidean spheres SR(p) ≡ {y :

∑3
l=1(yi − pi)2 = R2} in the

second lemma and the analogous estimates for surfaces close to SR(p) in the
third lemma.

Lemma 2.1. Let HS be the mean curvature of SR(p) and dσe be the volume
form of the standard sphere metric. Then

(i) HS =
2

R
+

1

2
hij,k(y − p)

(yi − pi)(yj − pj)(yk − pk)
R3

+ 2hij(y − p)
(yi − pi)(yj − pj)

R3
− hij,i(y − p)

yj − pj
R

+
1

2
hii,j(y − p)

yj − pj
R

− hii(y)

R
+O(R−2−q). (2.1)

(ii) For α = 1, 2, 3,
∫

SR(p)
(yα − pα)

(
HS −

2

R

)
dσe = 8πmpα − 8πmCα +O(R−q). (2.2)

Proof. Because a similar computation for spherically asymptotically flat
manifolds could be found in [H08, Section 6], and the basic idea is exactly
the same, we include only the sketch of the proof here.

Let νg denote the outward unit normal vector field on SR(p) with respect
to the induced metric from g. Computing directly, we have

νg =
∇|y − p|
|∇|y − p||g

=

(
1 +

1

2
hst

(ys − ps)(yt − pt)
|y − p|2

)
yl − pl
|y − p|

∂

∂yl

−hkl
yk − pk
|y − p|

∂

∂yl
+O(R−1−q). (2.3)

The mean curvature HS of SR(p) is then equal to divgνg, and a straightfor-
ward calculation gives us the identity (2.1).

For the second identity, we denote f1(y) = HS − 2/R. First we notice
that the left hand side of (2.2) converges because AF-RT implies that the
leading order term of f1(y) is even and vanishes after integrated with the
odd function yα − pα. Then we only need to analyze the second order term
of f1(y) which is exactly the case considered in [H08, Lemma 6.1]. By the
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divergence theorem and a density theorem proved in that article, we derive

∫

SR(p)
(yα − pα)

1

2
hij,k(y)

(yi − pi)(yj − pj)(yk − pk)
R3

dσe

=
1

2

∫

SR(p)
(yα − pα)hij,i

yj − pj
|y − p| dσe − 2

∫

SR(p)
(yα − pα)hij

(yi − pi)(yj − pj)
|y − p|3 dσe

+
1

2

∫

SR(p)
hii
yα − pα
|y − p| dσe +

1

2

∫

SR(p)
hiα

yi − pi
|y − p| dσe.

Therefore,

∫

SR(p)
(yα − pα)

(
HS −

2

R

)
dσe

= −1

2

(∫

SR(p)
(yα − pα)(hij,i − hii,j)

yj − pj
|y − p| dσe −

∫

SR(p)

(
hiα

yi − pi
|y − p| − hii

yα − pα
|y − p|

)
dσe

)

=
1

2
pα
∫

SR(p)
(gij,i − gii,j)

yj − pj
|y − p| dσe

− 1

2

(∫

SR(p)
yα(gij,i − gii,j)

yj − pj
|y − p| dσe −

∫

SR(p)

(
hiα

yi − pi
|y − p| − hii

yα − pα
|y − p|

)
dσe

)

= 8πmpα − 8πmCα +O(R−q),

where we have used the definitions of the ADM mass (1.3) and the center
of mass (1.5) in the last equality. �

In the following lemmas, c denotes a constant independent of R, and
for any functions f on SR(p), we define fodd(y) = f(y) − f(−y + 2p) and
feven(y) = f(y) + f(−y + 2p), where y and −y + 2p are antipodal points
on SR(p). Also, we denote f∗ to be the pullback of f defined by f∗(x) =
f(Rx+ p), and f∗ is a function on S1(0).

Lemma 2.2. Let AS be the second fundamental form on (SR(p), g|S) where
g|S is the induced metric on SR(p) from g, ∆S be the Laplacian on (SR(p), g|S).
Let ∆e

S be the Laplacian on (SR(p), ge|S) where ge is the Euclidean metric
on M , and ge|S is the induced metric on SR(p) from ge. Then

(i) |AS |2 =
2

R2
+ E1 where |E1| ≤ cR−2−q and |Eodd1 | ≤ cR−3−q.

(ii) For any f ∈ C2,α(SR(p)),

∆Sf = ∆e
Sf + E2 where |E2| ≤ cR−2−q‖f∗‖C2,α

and |Eodd2 | ≤ c
(
R−3−q‖f∗‖C2,α +R−2−q‖(f∗)odd‖C2,α

)
.

(iii) RicM (νg, νg) = E3 where |E3| ≤ cR−2−q and |Eodd3 | ≤ cR−3−q.
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Proof. Let {u1, u2} be local coordinates on an open set of y ∈ SR(p). The
second fundamental form AS is locally equal to

(AS)ij = −g
(
∇ ∂

∂ui

∂

∂uj
, νg

)
.

First, notice that in the proofs of this and the next lemmas, we temporarily
denote gab = g (ea, eb) for a, b ∈ {1, 2, 3} where ea = ∂

∂ui
if a = i ∈ {1, 2}

and ea = νg if a = 3 (instead of the original meaning in Definition 1.1).
Therefore, the above identity becomes

(AS)ij = −Γ3
ij (2.4)

because νg is a unit normal vector field. Also, because g is AF, g(y) = ge+h
and h = O(|y|−q). Around y, we have

Γ3
ij =

1

2
(gi3,j + gj3,i − gij,3) = (Γe)

3
ij + |∂h| (2.5)

where we denote the difference of Γ3
ij and (Γe)

3
ij symbolically by |∂h|. It

means that the difference of Γ3
ij and (Γe)

3
ij can be bounded by some con-

stant (depending only on g) multiplying ∂h and has the same asymptoti-
cally even/odd behavior as ∂h, where ∂h denotes the derivatives either in
the tangential or in the normal directions. Notice that the derivatives in
the tangential and normal directions do not change the asymptotic evenness
of h, but only add one more decay rate. For example, h = O(|y|−q) and
hodd = O(|y|−1−q). Then ∂h = O(|y|−1−q) and ∂h is still asymptotically
even at the decay rate (∂h)odd = O(|y|−2−q). In the following arguments,
we will use similar notations to bound lower order terms for simplicity.

We substitute (2.5) back to (2.4) and derive

(AS)ij = (Ae)ij + |∂h|.
Therefore, if the principal curvature of (SR(p), g|S) and the principal cur-
vature of (SR(p), ge|S) are denoted by (λS)i and λei respectively, the above
identity says:

(λS)i = λei + |∂h| = 1

R
+ |∂h|. (2.6)

Then

|AS |2 = (λS)2
1 + (λS)2

2 =
2

R2
+

1

R
|∂h|+ |∂h|2.

We could conclude (i) by analyzing the error terms on the right hand side
and by using the AF-RT condition.

Using g = ge + h, the Laplacian in the local coordinates is

∆Sf =
√
g−1 ∂

∂ui

(√
ggij

∂

∂uj
f

)

= ∆e
Sf +

(
|h||∂g||∂f |+ |h||∂2f |+ |∂h||∂f |

)
. (2.7)



8 LAN-HSUAN HUANG

By the definition of f∗, |∂f(y)| = R−1|∂f∗(x)| and |∂2f(y)| = R−2|∂2f∗(x)|,
and then (ii) follows.

For (iii), notice that |RicM (νg, νg)| = |D2g|, where Dg denotes the usual

derivatives of g in { ∂
∂xi
} directions as in Definition 1.1. Therefore, |D2g| =

O
(
|y|−2−q) and

∣∣(D2g)odd
∣∣ =

∣∣D2
(
godd

)∣∣ = O(|y|−3−q). �
In the previous lemma, we have shown that some quantities on (SR(p), g|S)

are close to those on (SR(p), ge|S) by using the AF-RT condition. In the fol-
lowing lemma, we will generalize the above results and prove that similar
estimates also hold for surfaces which are cR1−q-graphs over SR(p) for some
constant c (recall q ∈ (1/2, 1], the decay rate of the AF metrics).

Lemma 2.3. Let N be a graph over SR(p) defined by

N =
{
z = y + ψνg : ψ ∈ C2,α (SR(p))

}
.

Assume ‖ψ∗‖C2,α(S1(0)) ≤ cR1−q and ‖(ψ∗)odd‖C2,α(S1(0)) ≤ cR−q. Let µg be
the outward unit normal vector field on N , AN be the second fundamental
form, and ∆N be the Laplacian on (N, g|N ). Then

(i) |AN |2 =
2

R2
+ E′1 where |E′1| ≤ cR−2−q and |(E′1)odd| ≤ cR−3−q.

(ii) For any f ∈ C2,α(N), we let f̃(y) = f(Ψ(y)), Ψ(y) ≡ y + ψνg,

and f∗ = (f̃)∗, the pull-back function defined on S1(0). Then

(∆Nf)(Ψ(y)) = ∆e
S f̃(y) + E′2 where |E′2| ≤ cR−2−q‖f∗‖C2,α

and |(E′2)odd| ≤ c
(
R−2−2q‖f∗‖C2,α +R−2−q‖(f∗)odd‖C2,α

)
.

(iii)
(
RicM (µg, µg)

)
(Ψ(y)) = E′3

where |E′3| ≤ cR−2−q and |(E′3)odd| ≤ cR−3−q.

Proof. Similarly as in the proof of Lemma 2.2, let {u1, u2} be local coordi-
nates on an open set U of y ∈ SR(p). Moreover, without loss of generality,
we assume { ∂

∂u1
, ∂
∂u2

, νg} are orthonormal at y with respect to the metric g.

Let {v1, v2} be the corresponding local coordinates on V = Ψ(U) ⊂ N and
µg be the outward unit normal vector field on N with respect to g. Because
M is AF, up to lower order terms, we have

∂

∂vi
=

∂

∂ui
+ (AS)ijψ

∂

∂uj
+
∂ψ

∂ui
νg (2.8)

µg = νg + ψHSνg −
∑

i=1,2

∂ψ

∂ui

∂

∂ui
(2.9)

where we parallel transport
{

∂
∂u1

, ∂
∂u2

, νg

}
to z = y + ψνg along the unique

geodesic connecting y and z. In this proof, we denote

ḡab = g(ēa, ēb) where ēa = ∂
∂vi

if a = i ∈ {1, 2} and ē3 = µg

gab = g(ea, eb) where ea = ∂
∂ui

if a = i ∈ {1, 2} and e3 = νg.
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where gab is defined the same as in the proof of the previous lemma. By
(2.8) and (2.9), we have for i ∈ {1, 2}, a, b ∈ {1, 2, 3}

ḡia = gia + |ψ||AS ||g|+ |∂ψ||g|
ḡia,b = gia,b + |∂ψ||AS ||g|+ |ψ||∂AS ||g|+ |ψ||A||∂g|

+|∂2ψ||g|+ |∂ψ|2|∂g|. (2.10)

To prove (i), notice that

(AN )ij = −g
(
∇ ∂

∂vi

∂

∂vj
, µg

)
= −Γ̄3

ij

and

Γ̄3
ij =

1

2
(ḡi3,j + ḡj3,i − ḡij,3)

= Γ3
ij + |∂ψ||AS ||g|+ |ψ||∂AS ||g|+ |ψ||AS ||∂g|+ |∂2ψ||g|+ |∂ψ|2|∂g|

Therefore, by (2.6) and the previous two identities,

|AN |2 = |AS |2 +
1

R

(
|∂ψ||AS ||g|+ |ψ||∂AS ||g|+ |ψ||A||∂g|+ |∂2ψ||g|+ |∂ψ|2|∂g|

)

where the terms with the weakest decay rate of the error terms are, for
instance,

1

R
|∂2ψ||g| = O(R−2−q).

Similarly, we could compute (E′1)odd and use Lemma 2.2(i) to conclude (i).
For (ii), the Laplacian in local coordinates is

∆Nf(z) =
√
ḡ
∂

∂vi

(√
ḡḡij

∂

∂vj
f(z)

)

=
√
g
∂

∂ui

(√
ggij

∂

∂uj
f(z)

)
+ |∂ψ||AS ||g||∂f |

+|ψ||∂AS ||g||∂f |+ |ψ||AS ||g||∂g||∂f |+ |ψ||AS ||g||∂2f |,
and then

(∆Nf)(Ψ(y)) = ∆S f̃(y) + |∂ψ||AS ||g||∂f̃ |
+|ψ||∂AS ||g||∂f̃ |+ |ψ||AS ||g||∂g||∂f̃ |+ |ψ||AS ||g||∂2f̃ |

where the terms with the weakest decay rate of the error terms are, for
instance,

|∂ψ||AS ||g||∂f̃(y)| ≤ R−1|∂ψ||AS ||g||∂f∗(x)| ≤ CR−2−q‖f∗‖C2,α .

Then, (ii) follows from Lemma 2.2(ii) and similar estimates on (E′2)odd.
Using Lemma 2.2(iii) and the identity

RicM (µg, µg)(z) = RicM (νg, νg) + |D2g||ψ||AS |+ |D2g||∂ψ|,
we can conclude (iii).

�
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3. Existence of the Foliation

In this section, we will use the implicit function theorem as in [Ye96] and
prove the existence of the foliation by constant mean curvature surfaces,
assuming the ADM mass m 6= 0. From our construction, each leaf of the
foliation is close to some Euclidean sphere centered at p. We will also show
that p converges to the center of mass C.

Through this section, we assume (M, g) is AF-RT with q ∈ (1/2, 1], and
c and ci denote constants independent of R. The first theorem states the
existence of a surface with some given constant mean curvature.

Theorem 3.1 (Existence of the CMC surfaces). There exist constants σ0

and c0 so that, for all R > σ0, there is ΣR with constant mean curva-
ture 2/R + O(R−1−q), and ΣR is a c0R

1−q-graph over SR(C), i.e. ΣR =
{y + ψνg : y ∈ SR(C)} with ‖ψ∗‖C2,α ≤ c0R

1−q.

Proof. Because the mean curvature of SR(p) is equal to some constant up
to O(R−1−q)-terms (see (2.1)), we would like to construct ΣR by perturbing
SR(p) in the normal direction. However, contrast to the case in which (M, g)
is spherically asymptotically flat, the mean curvature of SR(p) is not close
to some constant enough to apply the implicit function theorem. Therefore,
we will first construct the unique approximating spheres S(p,R) associated
to SR(p) whose mean curvature is close to some constant up to O(R−1−2q)-
terms. Then, the implicit function theorem on S(p,R) can be used to find
ΣR when the center p is correctly chosen.

Step 1. Constructing S(p,R):
Define L0 = −∆0 − 2 to be the Euclidean second variation operator on

S1(0), where ∆0 is the Laplacian with respect to the standard spherical
metric on S1(0). It is known that L0 has the kernel spanned by {x1, x2, x3}
where x is the position vector, because the mean curvature is preserved by
translations in the Euclidean space. Also notice that the L2-complement

(RangeL0)⊥ = span{x1, x2, x3} by the self-adjointness of L0. Recall that
f1(y) = HS − (2/R) as in Lemma 2.1. Let f2(y − p) be the leading order
term of f1(y) defined by

f2(y − p) =
1

2
hij,k(y − p)

(yi − pi)(yj − pj)(yk − pk)
R3

+ 2hij(y − p)
(yi − pi)(yj − pj)

R3
− hij,i(y − p)

yj − pj
R

+
1

2
hii,j(y − p)

yj − pj
R

− hii(y − p)
R

and then f1(y) − f2(y − p) = O(R−2−q). For any φ ∈ C2,α(SR(p)), we
consider the equation,

−∆e
Sφ−

2

R2
φ = f2(y − p)− A · (y − p)

R3+q
− f̄2, (3.1)
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where f̄2 ≡ (4πR2)−1
∫
SR(p) f2(y − p) dσe, and A · (y − p)R−3−q is the cor-

rection term such that the right hand side of (3.1) is in the range. More
explicitly, A = (A1, A2, A3) and, for α = 1, 2, 3,

Aα =
3

4π
R−1+q

∫

SR(p)
(yα − pα)f2(y − p) dσe. (3.2)

Notice that Aα = O(1). Then there exists a unique solution φ0 ∈ Ker⊥.
In order to obtain a scale-free (in R) estimate of φ0, we scale and translate
y ∈ SR(p) to x ∈ S1(0) by y = Rx+ p and have

L0φ
∗ = R2

(
f∗2 (x)− A · x

R2+q
− f̄2

)
,

where f∗2 (x) = f2(Rx). By the Hölder estimate, because φ∗0 ∈ (KerL0)⊥

‖φ∗0‖C2,α ≤ c
∥∥∥∥R2

(
f∗2 (x)− A · x

R2+q
− f̄2

)∥∥∥∥
C0,α

≤ c0

2
R1−q (3.3)

for some c0 depending only on g and Dg. Moreover, (φ∗0)odd satisfies the
following equation

L0(φ∗0)odd = R2(f∗2 )odd − 2A · x
Rq

.

Therefore, because (φ∗0)odd ∈ (KerL0)⊥, by the Hölder estimate and the fact
that f∗2 is asymptotically even, we have (by choosing c0 larger if necessary)

‖(φ∗0)odd‖C2,α ≤ c
∥∥∥∥R2(f∗2 )odd − 2A · x

Rq

∥∥∥∥
C0,α

≤ c0R
−q. (3.4)

Then we define

S(p,R) = {y + φ0νg}
where φ0(y) = φ∗0 ((y − p)/R). In particular, S(p,R) is a graph over SR(p)
with ‖φ∗0‖C2,α ≤ 2−1c0R

1−q and ‖(φ∗0)odd ≤ c0R
−q which satisfies the condi-

tions for N in Lemma 2.3.

Remark. The constant f̄2 in (3.1) is not necessary in this argument. How-
ever, the solution φ to (3.1) has zero mean value because of the presence
of f̄2, and then the geometric radius S(p,R) is precisely R. In the case
of spherically asymptotically flat manifolds, the right hand side of (3.1) is
zero, and the only solution in the complement of the kernel is φ = 0. Then
S(p,R) = SR(p).

Step 2. Calculating the mean curvature of S(p,R):
Denoting HS(φ0) the mean curvature of S(p,R), we use Taylor’s theorem

for mappings between two Banach spaces (cf. [MRA]) and have

HS(φ0) = HS(0) + dHS(0)φ0 +

∫ 1

0
(dHS (sφ0)− dHS(0))φ0ds
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where dHS is the first Fréchet derivative in the φ0-component, and dHS(0)
is the linearized mean curvature operator on SR(p) defined by

dHS(0) = ∆S + |AS |2 +RicM (νg, νg),

where ∆S , AS , and RicM (νg, νg) are defined as in Lemma 2.2. The integral
term above can be bounded by sups∈[0,1]

∣∣d2HS(sφ0)φ0φ0

∣∣ by the mean value
inequality, and

d2HS(sφ0)φ0φ0 =
∂2

∂t2
HS(tφ0)

∣∣∣∣
t=s

.

The left hand side is the second Fréchet derivative and the right hand
side is the second derivative of the mean curvature of the surface Ns ≡
{y + sφ0νg : y ∈ SR(p)}. For R large, the unit outward normal vector field
on Ns is close to νg, and a straightforward calculation gives us
∣∣∣∣
∂2

∂t2
HS(tφ0)

∣∣∣∣ ≤ c
(
|Rijkl| |ANs | |φ0|2 + |ANs | |φ0||∂2φ0|+ |ANs |3 |φ0|2

)

≤ cR−3‖φ∗0‖2C2,α . (3.5)

Noticing that HS(0) is the mean curvature of SR(p), by (2.1) in Lemma 2.1
and (3.1), we have

HS(φ0) =
2

R
+ f1(y) + ∆Sφ0 +

(
|AS |2 +RicM (νg, νg)

)
φ0

+

∫ 1

0
(dHS (sφ0)− dHS(0))φ0 ds

=
2

R
+ f̄2 + f1(y)− f2(y − p) +

A · (y − p)
R3+q

+ E4, (3.6)

where

E4 = (∆S −∆e
S)φ0 +

(
|AS |2 −

2

R2
+RicM (νg, νg)

)
φ0

+

∫ 1

0
(dHS (sφ0)− dHS(0))φ0 ds.

By Lemma 2.2 and (3.5), the error term E4 is bounded by

|E4| ≤ c
(
R−2−q‖φ∗0‖C2,α +R−3‖φ∗0‖2C2,α

)
≤ cR−1−2q

|(E4)odd| ≤ c
(
R−3−q‖φ∗0‖C2,α +R−2−q‖(φ∗0)odd‖C2,α

+R−4−q‖φ∗0‖2C2,α +R−3‖(φ∗0)odd‖C2,α‖φ0‖C2,α

)

≤ cR−2−2q. (3.7)

In the last inequalities, we have used (3.3) and (3.4). Therefore, we derive
HS(φ0) = (2/R) + f̄2 +O(R−1−2q).

Step 3. Constructing the CMC surfaces:
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We will construct a surface ΣR with constant mean curvature by using
the normal perturbations of S(p,R). In the following, we suppress the index
R of ΣR when it is clear from context. We denote the mean curvature of
the normal graph ψ over S(p,R) by HS(p,R, ψ). By Taylor’s theorem, for
any ψ ∈ C2,α(S(p,R)) with ‖ψ∗‖C2,α ≤ c and a parameter λ which is for
the moment arbitrary (we choose λ to be a negative power in R below),

HS(p,R, λψ) = HS(p,R, 0) + ∆Sλψ +
(
|AS |2 +RicM (µg, µg)

)
λψ

+

∫ 1

0
(dHS(p,R, s(λψ))− dHS(p,R, 0))λψ ds (3.8)

where ∆S , AS , and µg are defined as in Lemma 2.3 where N = S(p,R),

and ψ̃ and ψ∗ are denoted correspondingly. By (3.6) and (3.8) (notice that
HS(φ0) = HS(p,R, 0) = mean curvature of S(p,R)), solving

HS(p,R, λψ) =
2

R
+ f̄2 (3.9)

is equivalent to solving ψ to the following equation:

0 = f1(y)− f2(y − p) +
A · (y − p)
R3+q

+ E4 + ∆Sλψ +
(
|AS |2 +RicM (µg, µg)

)
λψ

+

∫ 1

0
(dHS(p,R, s(λψ))− dHS(p,R, 0))λψ ds.

= f1(y)− f2(y − p) +
A · (y − p)
R3+q

+ E4 + ∆e
S(λψ̃) +

2

R2
λψ̃ + E5 (3.10)

where

E5(y) = λ(∆Sψ) ◦Ψ(y)− λ∆e
Sψ̃

+

(
|AS |2(Ψ(y))− 2

R2
+RicM (µg, µg)

)
λψ̃

+

∫ 1

0
(dHS(p,R, s(λψ))− dHS(p,R, 0))λψ ds

and Ψ(y) = y + φ0νg. Using Lemma 2.3 and (3.5), we have

|E5| ≤ c
(
λR−2−q‖ψ∗‖C2,0 + λ2R−3‖ψ∗‖2C2,0

)

|(E5)odd| ≤ c
(
λR−2−2q‖ψ∗‖C2,α + λR−2−q

∥∥∥(ψ∗)odd
∥∥∥
C2,α

+λ2R−4−q‖ψ∗‖2C2,α + λ2R−3 ‖ψ∗‖C2,α

∥∥∥(ψ∗)odd
∥∥∥
C2,α

)
.

We pull back (3.10) on S1(0),

L0ψ
∗ = λ−1R2

(
f∗1 (x)− f∗2 (x) +

A · x
R2+q

+ E∗4 + E∗5

)
.

where f∗1 (x) = f1(Rx + p) and E∗4 , E
∗
5 are denoted similarly, but f∗2 (x) =

f2(Rx+ p− p) = f2(Rx). We choose

λ = R−a for a fixed a ∈ (1− q, q). (3.11)
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This interval is non-empty because q > 1/2. Then the above identity be-
comes

L0ψ
∗ = R2+a

(
f∗1 (x)− f∗2 (x) +

A · x
R2+q

+ E∗4 + E∗5

)
≡ F (p,R, ψ∗) (3.12)

In order to find a solution ψ∗ to the above equation, a necessary condition
is that F (p,R, ψ∗) lies inside RangeL0. Using m 6= 0, we will show this can
be achieved by correctly choosing p = p(R,ψ∗). First, by the definition of
A in (3.2), we have

∫

S1(0)
xα
(
f∗1 (x)− f∗2 (x) +

A · x
R2+q

+ E∗4 + E∗5

)
dσe

=

∫

S1(0)
xαf∗1 (x) dσe +

∫

S1(0)
xα (E∗4 + E∗5) dσe

=

∫

SR(p)

yα − pα
R

f1(y)R−2 dσe +

∫

S1(0)
xα (E∗4 + E∗5) dσe

Using (2.2) in Lemma 2.1, the first integral is equal to
∫

SR(p)

yα − pα
R

f1(y)R−2 dσe = 8πm (pα − Cα)R−3 +O(R−3−q).

To deal with the error term E∗4 , by the asymptotically even/odd properties
of E∗4 and (3.7),

∣∣∣∣∣

∫

S1(0)
xαE∗4 dσe

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

S1(0)∩{xα≥0}
xα(E∗4)odd dσe

∣∣∣∣∣

≤
∣∣∣∣∣

∫

SR(p)∩{yα−pα≥0}

(yα − pα)

R
(E4)oddR−2 dσe

∣∣∣∣∣

≤ c sup
SR(p)

∣∣∣(E4)odd
∣∣∣ ≤ cR−2−2q

and similarly,∣∣∣∣∣

∫

S1(0)
xαE∗5 dσe

∣∣∣∣∣ ≤ c sup
SR(p)

∣∣∣Eodd5

∣∣∣

≤ cR−2−q−a (‖ψ∗‖C2,α + ‖ψ∗‖2C2,α

)
. (3.13)

Therefore, because m 6= 0, we can choose

p(R,ψ∗) = C + E6, (3.14)

with

|E6| ≤ c
(
R−q +R3

(
sup

∣∣∣Eodd4

∣∣∣+ sup
∣∣∣Eodd5

∣∣∣
))

≤ cR−ε
(
1 + ‖ψ∗‖C2,α + ‖ψ∗‖2C2,α

)

for some ε > 0 because a ∈ (1 − q, q). Then F (p(R,ψ∗), R, ψ∗) ∈ RangeL0

for any R large and ψ∗ ∈ C2,α(S1(0)).
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Remark. The lower bound a > 1 − q is used in estimating E6 so that E5

has the stronger decay rate than the term p − C in F (p,R, ψ). The upper
bound a < q is used so that F (p,E, ψ) is bound by a negative power in R,
so we are able to iterate the equation (3.12) as demonstrated in the next
paragraph.

To complete the proof, we will use iteration to find a fixed point ψ∗ of
(3.12). Given any ψ∗1 with ‖ψ∗1‖C2,α ≤ 1, there exists a unique C2,α function
ψ∗2 ∈ KerL⊥0 , so that

L0ψ
∗
2 = F (p(R,ψ∗1), R, ψ∗1)

and by the Hölder inequality,

‖ψ∗2‖C2,α(S1(0)) ≤ c‖F‖C0,α(S1(0)) ≤ cRa−q ≤ cR−ε2

for some ε2 > 0. Choosing R large enough (independent of ψ∗1), we have
‖ψ∗2‖C2,α ≤ 1. Continuing the iteration, we obtain a sequence of functions
{ψ∗k} inside a unit ball of C2,α(S1(0)) and

L0ψ
∗
k = F

(
p(R,ψ∗k−1), R, ψ∗k−1

)
.

By the Arzela-Ascoli theorem, there is a subsequence ψ∗kj → ψ∗0 in C2,µ for

some µ ∈ (0, α), and then ψ∗0 is a solution to

L0ψ
∗
0 = F (p(R,ψ∗0), R, ψ∗0) .

Therefore, by letting ψ0(z) = ψ∗0
(
z−νgφ0−p

R

)
, λψ0 is a solution to the identity

(3.9). Geometrically, the identity indicates that the graph over S(p,R)

Σ =

{
y + φ0νg +

ψ0

Ra
µg

}

has constant mean curvature (2/R) + f̄2. Because µg is close to νg by (2.9),
and p = C +O(R−ε), for R large, we can rearrange and write Σ as a graph
over SR(C)

ΣR =
{
y + ψνg : ψ ∈ C2,α(SR(C))

}

with ‖ψ∗‖C2,α ≤ c0R
1−q.

�

After constructing the family of surfaces with constant mean curvature,
the geometric definition of center of mass in [HY96] generalizes.

Definition 3.2. Let z ∈ ΣR be the position vector. The center of mass of
(M, g,K) is defined by, for α = 1, 2, 3,

CαHY = lim
R→∞

∫
ΣR

zα dσe∫
ΣR

dσe
.

The following corollary says that CHY is equal to C, and it generalizes the
result in [H08, Theorem 2].
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Corollary 3.3. Assume (M, g,K) is AF-RT with q ∈ (1/2, 1]. Then CHY
converges and is equal to C.

Proof. Let Φ be the diffeomorphism from SR(p) to ΣR defined by Φ(y) =
y + φ0νg +R−aψ0µg. Then by the definition and the area formula,

∫
ΣR

zα dσe∫
ΣR

dσe
=

∫
SR(p)

(
yα + φ0ν

α
g +R−aψ0µ

α
g

)
JΦ dσe∫

SR(p) JΦ dσe

= pα +

∫
SR(p)O(R1−2q) dσe∫

SR(p) dσe
.

After taking limits and using (3.14), we prove the corollary. �

Next, we prove that the family of surfaces with constant mean curvature
{ΣR} form a smooth foliation. In order to use the inverse function theorem
for the mean curvature map, we would like to estimate the eigenvalues of its
linearized operator.

Definition 3.4 (Stability). A hypersurface N in M is called stable if the
second variation operator LN := −∆N −

(
|AN |2 +RicM (µg, µg)

)
has the

non-negative lowest eigenvalue µ0 among functions with zero mean value,
i.e.∫

N
uLNu dσ ≥ µ0

∫

N
u2 dσ ≥ 0 for all non-zero u with

∫

N
u dσ = 0.

N is called strictly stable, if µ0 is strictly positive.

Lemma 3.5. Let N be a cR1−q-graph over SR(p) defined as in Lemma 2.3.
For R large, N is strictly stable with the lowest eigenvalue µ0 = (6m/R3) +
O(R−2−2q).

Proof. By Lemma 2.3,
∣∣∣∣(LNf) (Ψ(y))−

(
−∆e

Sf(Ψ(y))− 2

R2
f(Ψ(y))

)∣∣∣∣
≤ c

(
R−2−q +R−2−q‖f∗‖C2,α(S1(0))

)
.

For R large, the lowest eigenfunctions f for LN are equal to the lowest
eigenfunctions of −∆e

S − 2
R2 which are in span{y1 − p1, y2 − p2, y3 − p3}, up

to lower terms O(R1−q). Therefore, without loss of generality, we only need
to estimate the following integral

∫

N

(
zα − pα
R

)
LN

(
zα − pα
R

)
dσ

and prove it is greater than some suitable positive constant.
Let µLap be the first eigenvalue of −∆N among functions with zero mean

value. We follow the proof of Lichnerowicz’s theorem on the lower bound
of µLap, but modify it for our setting (cf. [C, Chapter III.4]). For any
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compact manifold N without boundary, and any functions f on N , the
Bochner-Lichnerowicz identity says

1

2
∆N |∇Nf |2 = (HessNf)2 + 〈∇Nf,∇N∆Nf〉+RicN (∇Nf,∇Nf).

Because N is two-dimensional in our case, RicN (∇Nf,∇Nf) = K|∇Nf |2
where K is the Gauss curvature of N . Moreover, let f be the first eigen-
function of −∆N , i.e. −∆Nf = µLapf , we have

1

2
∆N |∇Nf |2 ≥

(∆Nf)2

2
− µLap|∇Nf |2 +K|∇Nf |2

with equality if and only if HessNf = cI for some constant c, where I is the
identity matrix. After integrating the above inequality, we derive

µ2
Lap

∫

N
f2 dσ ≥

∫

N
2K|∇Nf |2 dσ. (3.15)

Let (λN )i be the principal curvature of N . By the Gauss equation,

2K = H2 − |A|2 − 2RicM (µg, µg) +Rg

= 2(λN )1(λN )2 − 2RicM (µg, µg) +Rg

= 2

(
1

R
+

(
(λN )1 −

1

R

))(
1

R
+

(
(λN )2 −

1

R

))
− 2RicM (µg, µg) +Rg

=
2H

R
− 2

R2
− 2RicM (µg, µg) +O(R−2−2q)

=
2

R2
+

2

R

(
H − 2

R

)
− 2RicM (µg, µg) +O(R−2−2q).

Notice that in the second last equality, we have used (λN )i = (1/R) +
O(R−1−q), H = (2/R) +O(R−1−q) as calculated in the proof of Lemma 2.3,
and Rg = O(R−2−2q) by the constraint equations. Moreover, by (2.3) and
(2.9), the normal vector µg is close to the Euclidean normal vector on the
sphere, so |N | is close to the area of the Euclidean sphere,

|N | = 4πR2 +O(R2−q). (3.16)

We substitute K calculated above into (3.15) and have

µ2
Lap

∫

N
f2 dσ ≥ 2

R2
µLap

∫

N
f2 dσ +

2

R

∫

N

(
H − 2

R

)
|∇Nf |2 dσ

−2

∫

N
RicM (µg, µg)|∇Nf |2 dσ

+

∫

N
O(R−2−2q)|∇Nf |2 dσ (3.17)

with equality if f = (zl − pl/R) + O(R−q), and therefore, µLap = (2/R2) +

O(R−2−q). Let ul = (zl − pl)/R and cl =
∫
N u

2
l dσ,

cl =
4πR2

3
+O(R2−q) and |∇Nul|2 =

1− u2
l

R2
+O(R−2−q).
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Replacing f by ul and dividing (3.17) by µLap and cl, we derive, for l = 1, 2, 3,

µLap =
2

R2
+
c−1
l

R

∫

N

(
H − 2

R

)
(1− u2

l ) dσ

−c−1
l

∫

N
RicM (µg, µg)(1− u2

l ) dσ +O(R−2−2q). (3.18)

Let v be the lowest eigenfunction of LN , i.e. LNv = µ0v,

µ0

∫

N
v2 dσ =

∫

N
vLNv ≥ µLap

∫

N
v2 dσ −

∫

N
|AN |2v2 dσ −

∫

N
RicM (µg, µg)v

2 dσ

with equality if v = ul +O(R−q). Therefore, noticing that

|AN |2 = (λN )2
1 + (λN )2

2 =

(
1

R
+

(
(λN )1 −

1

R

))2

+

(
1

R
+

(
(λN )2 −

1

R

))2

=
2

R2
+

2

R

(
H − 2

R

)
+O(R−2−2q) (3.19)

and substituting µLap by (3.18), we have

µ0 = µLap −
2

R2
− c−1

l

R

∫

N

(
H − 2

R

)
2u2

l dσ − c−1
l

∫

N
RicM (µg, µg)u

2
l dσ +O(R−2−2q)

=
c−1
l

R

∫

N

(
H − 2

R

)
(1− 3u2

l ) dσ − c−1
l

∫

N
RicM (µg, µg) dσ +O(R−2−2q).

Because c1 = c2 = c3 up to lower order terms and
∑

l u
2
l = 1 up to lower

order terms, we sum the above identity over l, divide it by 3, and derive

µ0 = − 3

4πR2

∫

N
RicM (µg, µg) dσ +O(R−2−2q).

Using the definition of the ADM mass (1.4) (it is known that {|x| = r}
can be replaced by more general surfaces including N) and the fact that
the scalar curvature Rg is of lower order by the constraint equations, for R
large,

∫

N
RicM (µg, µg) dσ =

∫

N
RicMij

(
zi − pi
R

)
µjg dσ

= − 1

2R

∫

N
RicMij (−2zi)µjg dσ +O(R−1−q) = −8πm

R
+O(R−1−q).

Therefore,

µ0 = − 3

4πR2

(−8πm

R

)
+O(R−2−2q) =

6m

R3
+O(R−2−2q).

�

To prove that LN is invertible, the similar calculations in [HY96] could
be applied in our setting.
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Lemma 3.6. Let N be a cR−1−q-graph over SR(p) defined as in Lemma
2.3. For R large, LN is invertible and L−1

N : C0,α(N) → C2,α(N) with

|L−1
N | ≤ cm−1R3.

Proof. Let η0 be the lowest eigenvalue of LN with the corresponding eigen-
function h0 among all functions (not necessarily with zero mean value). First
notice that by (3.19)

η0 = min
{‖u‖L2=1}

∫

N
−u∆Nu−

(
|AN |2 +RicM (µg, µ)

)
u2 dσ

≥ − 2

R2
+O(R−2−q).

On the other hand, if we replace u by the constant |N |−1/2, we obtain

η0 ≤ −
2

R2
+O(R−2−q),

and then

η0 = − 2

R2
+O(R−2−q). (3.20)

We would like to derive a L2-estimate on the difference of h0 and its mean
value h̄0 ≡ |N |−1

∫
N h0 dσ.

−∆N (h0 − h̄0)−
(
|AN |2 +RicM (µg, µg)

)
(h0 − h̄0)

= η0(h0 − h̄0) +
(
η0 + |AN |2 +RicM (µg, µg)

)
h̄0 (3.21)

Multiplying the above identity by (h0 − h̄0) and integrating it over N , we
get
∫

N
|∇N (h0 − h̄0)|2 dσ =

∫

N

(
η0 + |AN |2 +RicM (µg, µg)

)
(h0 − h̄0)2 dσ

+

∫

N
(η0 + |AN |2 +RicM (µg, µg))(h0 − h̄0)h̄0 dσ.

As shown in the previous lemma, µLap = 2/R2 + O(R−2−q) for functions
with zero mean value. Also, by (3.19) and (3.20), η0 + |AN |2 = O(R−2−q)
pointwisely. Then
(

2

R2
+O

(
R−2−q)

)∫

N
|h0 − h̄0|2 dσ

≤ cR−2−q
∫

N
|h0 − h̄0|2 dσ + cR−2−q

∫

N
|h0 − h̄0||h̄0| dσ

≤ cR−2−q
∫

N
|h0 − h̄0|2 dσ + cR−2−q

(
εRq

∫

N
|h0 − h̄0|2 dσ +

c(ε)

Rq

∫

N
|h̄0|2 dσ

)
.

For ε small enough, we obtain
∫

N
|h0 − h̄0|2 dσ ≤ cR−2q

∫

N
|h̄0|2 dσ. (3.22)
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Let η1 be the next eigenvalue with the corresponding eigenfuction h1. We
will show that η1 is positive and η1 ≥ (6m/R3) +O(R−2−2q). First,

0 =

∫

N
h0h1 dσ =

∫

N
(h0 − h̄0)(h1 − h̄1) dσ +

∫

N
h̄0h1 dσ.

Then
∣∣∣∣
∫

N
h1 dσ

∣∣∣∣ ≤ |h̄0|−1

(∫

N
(h0 − h̄0)2 dσ

) 1
2
(∫

N
(h1 − h̄1)2 dσ

) 1
2

. (3.23)

Because LNh1 = η1h1,
∫

N
(h1 − h̄1)LN (h1 − h̄1) dσ =

∫

N
η1(h1 − h̄1)2 dσ

+

∫

N
h̄1(h1 − h̄1)

(
|AN |2 +RicM (µg, µg)

)
dσ.

The left hand side is bounded below by µ0

∫
N (h1 − h̄1)2 dσ. Therefore, by

Lemma 3.5, (3.19), (3.22), and (3.23)
(

6m

R3
+O

(
R−2−2q

))∫

N
(h1 − h̄1)2 dσ

≤η1

∫

N
(h1 − h̄1)2 dσ + |N |−1

∣∣∣∣
∫

N
h1 dσ

∣∣∣∣
∣∣∣∣
∫

N

(
|AN |2 +RicM (µg, µg)

)
(h1 − h̄1) dσ

∣∣∣∣

≤η1

∫

N
(h1 − h̄1)2 dσ + c|N |−1R−2−q

∣∣∣∣
∫

N
h1 dσ

∣∣∣∣
∫

N
|h1 − h̄1| dσ

≤η1

∫

N
(h1 − h̄1)2 dσ + c|N |− 1

2R−2−q
∣∣∣∣
∫

N
h1 dσ

∣∣∣∣
(∫

N
|h1 − h̄1|2 dσ

) 1
2

≤η1

∫

N
(h1 − h̄1)2 dσ + c|N |− 1

2R−2−q|h̄0|−1

(∫

N
(h0 − h̄0)2 dσ

) 1
2
(∫

N
(h1 − h̄1)2 dσ

)

≤η1

∫

N
(h1 − h̄1)2 dσ + cR−2−2q

∫

N
(h1 − h̄1)2 dσ.

Therefore,

η1 ≥
6m

R3
+O

(
R−2−2q

)

and then LN is invertible with |L−1
N | ≤ cm−1R3. �

In particular, the above lemma says that LΣR is invertible for surfaces
ΣR with constant mean curvature constructed in Theorem 3.1. In the next
theorem, we then use the invertibility of LΣR , the estimates in the above
two lemmas, and the inverse function theorem to show that {ΣR} form a
smooth foliation.

Theorem 3.7 (Smooth Foliation). Let {ΣR} be the family of surfaces with
constant mean curvature constructed in Theorem 3.1. Then {ΣR} form a
smooth foliation in the exterior region of (M, g).



Foliations by Stable Spheres with Constant Mean Curvature 21

Proof. Let H : C2,α(ΣR) → C0,α(ΣR) be the mean curvature operator de-
fined by

H(u) = the mean curvature of {z + µgu : z ∈ ΣR} .
Because dH = −LΣR is a linear isomorphism by Lemma 3.6, H is a diffeo-
morphism from some neighborhood UR of 0 ∈ C2,α to some neighborhood
VR of H(0) by the inverse mapping theorem. Moreover, {ΣR} vary smoothly
in R. To show that {ΣR} form a foliation, we need to prove ΣR1 and ΣR

have no intersection for any R1 6= R. First, when R1 is close to R and ΣR1

is the graph of u for u ∈ UR, we show that u satisfying H(u) = constant has
a sign. In the following, we suppress the index R and denote ΣR simply by
Σ. By the Taylor theorem, for any u ∈ UR,

H(u) = H(0)− LΣu+

∫ 1

0

(
d2H(su)− dH(0)

)
u ds.

Because H(u) and H(0) are constants, we can rewrite the above identity as

LΣu = C1 +

∫ 1

0

(
d2H(su)− dH(0)

)
u ds. (3.24)

A direct calculation by integrating the above identity over Σ and by (3.19),

C1 = −|Σ|−1

∫

Σ

(
|AΣ|2 +RicM (µg, µg)

)
u dσ

−|Σ|−1

∫

Σ

∫ 1

0

(
d2H(su)− dH(0)

)
u dsdσ

= − 2

R2
ū+O(R−2−q‖u‖C2,α). (3.25)

In order to prove that supΣ |u−ū| is small comparing with |ū|, we decompose
u = h0 + u0 where h0 is the lowest eigenfunction of LΣ and

∫
Σ h0u0 dσ = 0,

and we will prove h0 has a sign and u0 is small.

sup
Σ
|u− ū| ≤ sup

Σ
|h0 − h̄0|+ 2 sup

Σ
|u0|.

By the standard De Giorgi-Nash-Moser theory, because h0 − h̄0 satisfies
the second order elliptic equation (3.21) and ‖h0 − h̄0‖L2 is controlled as in
(3.22),

sup
Σ
|h0 − h̄0| ≤ cR−1‖h0 − h̄0‖L2(Σ) + cR|h̄0|

∥∥η0 + |AΣ|2 +RicM (µg, µg)
∥∥
L4

≤ cR−1−q|N |1/2|h̄0|+ cR−
1
2
−q|h̄0| ≤ cR−q|h̄0| (3.26)

sup
x 6=y

|h0(x)− h0(y)|
|x− y|α ≤ cR−α

(
sup |h0 − h̄0|+R|h̄0|

∥∥η0 + |AΣ|2 +RicM (µg, µg)
∥∥
L4

)

≤ cR−α−q|h̄0| (3.27)

Therefore, h0 has a sign when R large by (3.26). It remains to estimate
supΣ |u0| and prove that u0 is too small to change the sign of u. By the
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definition of u0, (3.20), (3.24), and (3.25),

LΣu0 = −η0h0 −
2

R2
h̄0 −

2

R2
ū0 +O(R−2−q‖u‖C2,α)

=
2

R2
(h0 − h̄0)− 2

R2
ū0 +O(R−2−q‖u‖C2,α).

Because LΣ has no kernel, by the Hölder estimate, for R large,

‖u0‖C2,α ≤ c
(
‖h0 − h̄0‖C0,α + ‖ū0‖C0,α +R−q‖u‖C2,α

)

≤ c
(
‖h0 − h̄0‖C0,α + |ū0|+R−q‖h0‖C2,α

)

≤ c
(
‖h0 − h̄0‖C0,α + |ū0|+R−q|h̄0|

)
. (3.28)

Because
∫

Σ h0u0 dσ = 0, similarly as in (3.23), we have
∣∣∣∣
∫

Σ
u0 dσ

∣∣∣∣ ≤ 2|N ||h̄0|−1 sup
Σ
|h0 − h̄0| sup

Σ
|u0|

and then by (3.26)

|ū0| ≤ 2|h̄0|−1 sup
Σ
|h0 − h̄0| sup

Σ
|u0| ≤ cR−q sup

Σ
|u0|.

Then |ū0| could be absorbed into the left hand side of (3.28). For R large
enough, by (3.27) we have

sup |u0| ≤ ‖u0‖C2,α ≤ c
(
‖h0 − h̄0‖C0,α +R−q|h̄0|

)
≤ cR−q|h̄0|.

Concluding above estimates, for R large, |u− ū| ≤ 2−1|ū|, and then u has a
sign.

We have proved that, in the neighborhood UR where the inverse function
theorem holds, any two surfaces with constant mean curvature have no in-
tersection. Because the size UR is independent of R by the bounds of |d2H|
and |L−1

Σ | (c.f. [MRA, Proposition 2.5.6]), we could inductively proceed the
argument toward infinity and conclude that {ΣR} form a foliation in the
exterior region. �

4. Uniqueness of the Foliation

In this section, we assume (M, g,K) is AF-RT with q ∈ (1/2, 1], and ΣR

is the surface with constant mean curvature constructed in Theorem 3.1.
Also recall that ΣR is a c0R

1−q-graph over SR(C).

4.1. Local Uniqueness.

Theorem 4.1 (Local Uniqueness). Given any c1 ≥ c0, there exists σ1 =
σ1(c1) so that, for R ≥ σ1, if N is a c1R

1−q-graph over SR(C), is topologically
a sphere, and has mean curvature equal to H(ΣR), then N = ΣR.

Proof. Because the normal vectors on SR(C) and ΣR are close, we can write
N as a graph over ΣR and assume N = {z + vµg : z ∈ ΣR}. We first prove
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that there is a constant c̃1 so that if ‖v‖C2,α(ΣR) ≤ 2c̃1, then v ≡ 0, by using
the invertibility of LΣR .

HΣR(v) = HΣR(0)− LΣRv +

∫ 1

0
(dHΣR(sv)− dHΣR(0)) v ds

=⇒ LΣRv =

∫ 1

0
(dHΣR(sv)− dHΣR(0)) v ds.

Because |L−1
ΣR
| ≤ cm−1R3 by Lemma 3.6 and (3.5),

‖v‖C2,α(ΣR) ≤ cm−1R3

∥∥∥∥
∫ 1

0
(dHΣR(sv)− dHΣR(0)) v dσ

∥∥∥∥
C0,α(ΣR)

≤ cm−1R3R−3‖v‖2C2,α(ΣR) ≤ cm−1‖v‖2C2,α(ΣR)

Choosing any c̃1 < c−1m/2, we have

‖v‖C2,α(ΣR) ≤ 2c̃1 =⇒ v ≡ 0.

Recalling the construction in Theorem 3.1, ΣR is a O(R−a)-graph over
S(p,R) for some fixed a ∈ (1 − q, q) and p = C + O(R−ε). For R large,
S(C, R) is within c̃1-distance of ΣR. Therefore, because the normal vectors
of ΣR and S(C, R) are close, for R large,

N is a c̃1-graph over S(C, R) =⇒ ‖v‖C2,α(ΣR) ≤ 2c̃1 =⇒ N = ΣR. (4.1)

By the assumption, N is the graph of u over SR(C) with ‖u‖C2,α ≤ c1R
1−q.

The mean curvature of N = {y + uνg} is

HS(u) = HS(0) + ∆Su+
(
|AS |2 +RicM (νg, νg)

)
u

+

∫ 1

0
(dHS(sv)− dHS(0)) v ds. (4.2)

Then let φ0 be the function defined as in the proof of Theorem 3.1,

−∆e
S(u− φ0)− 2

R2
(u− φ0) = f1(y)− f2(y − C) +

A · (y − C)
R3+q

+ f̄2

+(∆S −∆e
S)u+

(
|AS |2 −

2

R2
+RicM (νg, νg)

)
u

+

∫ 1

0
(dHS(su)− dHS(0))u ds. (4.3)

We decompose u into the part perpendicular to the kernel and the part
inside the kernel in the L2-space,

u = u⊥ + B · (y − C)R−q

where, for α = 1, 2, 3,

Bα =
3R−4+q

4π

∫

SR(C)
u(yα − Cα) dσe and

∫

SR(C)
(yα − Cα)u⊥ dσe = 0.
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Applying the Hölder estimate on (4.3), because u⊥−φ0 is in the orthogonal
complement of the kernel,

‖(u⊥ − φ0)∗‖ ≤ cR−q (1 + ‖u∗‖C2,α) .

To estimate the part inside the kernel, we observe that if (4.3) is projected
into the kernel, we have

0 =

∫

SR(C)
(yα − Cα)f1 dσe

+

∫

SR(C)
(yα − Cα)

(
(∆S −∆e

S)u⊥ +

(
|AS |2 −

2

R2
+RicM (νg, νg)

)
u⊥
)
dσe

−
∫

SR(C)
(yα − Cα)LS

(
B · (y − C)R−q

)
dσe + E7

where the error term E7 =
∫
SR(C) (yα − Cα)

∫ 1
0 (dHS(su)− dHS(0))u ds dσ.

Because the sphere is centered at the center of mass, by Lemma 2.1,
∫

SR(C)
(yα − Cα)f1 dσe = 8πm(Cα − Cα) +O(R−q) = O(R−q).

Then by the similar estimates as in Step 3 of the proof of Theorem 3.1,
the second line and E7 are of lower order. Moreover, using the eigenvalue
estimate in Lemma 3.5 (the equality case)

8πmBαR1−q = O(R−q).

Therefore,

‖u− φ0‖C2,α ≤ ‖u⊥ − φ0‖C2,α +
∥∥B · (y − C)R−q

∥∥
C2,α

≤ cR−q (1 + ‖u‖C2,α) + |B|R1−q

≤ cR−q + c1R
1−2q + cR−q.

By choosing R large (depending on c1), we have

‖u− φ0‖C2,α ≤ c̃1

2
.

Because S(C, R) = {y + φ0νg} and also the normal vectors on SR(C) and
on S(C, R) are close enough, we could arrange so that N is a c̃1-graph over
S(C, R). Then by (4.1), Σ′R = ΣR. �

The above theorem says that for surfaces bounded away the Euclidean
sphere centered at the center of mass, ΣR is the only one with constant mean
curvature H(ΣR). In particular, we can generalize the above statement for
any constant mean curvature surfaces which are spherical.

Corollary 4.2. Assume |p − C| ≤ c̃0R
1−q. Given any c̃1 ≥ c̃0 + c0, there

exists σ1 = σ1(c̃0, c̃1) so that, for R ≥ σ1, if N is a c̃1R
1−q-graph over

SR(p), is topologically a sphere, and has mean curvature equal to H(ΣR),
then N = ΣR.
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Proof. Assume N is a c̃1R
1−q-graph over SR(p). Because the normal vectors

on SR(p) and SR(C) are close and |p − C| ≤ c̃0R
1−q, N is a (c̃0 + c̃1)R1−q-

graph over SR(C) when R large. Then we can apply the previous theorem
(by letting c1 = c̃0 + c̃1) and derive that N = ΣR. �
4.2. A Priori Estimates. For general surfaces with constant mean curva-
ture, we would like to derive a priori estimates and show that they are close
to the Euclidean spheres.

Let N be a surface with constant mean curvature H. Assume N is stable
(Definition 3.4) and topologically a sphere. Let the minimum radius and
the maximal radius of N denoted by r(N) = min{|z| : z ∈ N} and r̄(N) =
max{|z| : z ∈ N} respectively. A is the second fundamental form of N , Å =
A− 1

2Hg|N is the trace-free part of A, µg is the outward unit normal vector
field on N , and ∆ and∇ are the Laplacian and the covariant derivative on N
with respect to the induced metric g|N . Moreover, to simplify the notations,
we suppress the superscript M and denote Rijkl or Riem the Riemannian
curvature tensor and Ric the Ricci curvature tensor of (M, g) respectively.

The following Sobolev inequality holds and can be found in [HY96, Propo-
sition 5.4].

Lemma 4.3 (Sobolev Inequality). For r large, there is a constant c so that
for any Lipschitz functions g on N ,

(∫

N
|g|2 dσ

) 1
2

≤ c
∫

N
|∇g|+H|g| dσ (4.4)

Lemma 4.4. Assume N is a hypersurface in M with constant mean cur-
vature H. Also, M is topologically a sphere and stable. Then there is some
constant c so that the following estimates hold.

(1) For any s > 2, ∫

N
|x|−s dσ ≤ cr2−s.

(2)
∥∥|Å|

∥∥
L2 ≤ cr−

q
2 .

(3)

c−1 ≤ H2|N | ≤ c.
Proof. Using the first variation formula as in [HY96, Lemma 5.2], for any
s > 2, ∫

N
|x|−s dσ ≤ cr2−sH2|N |.

As in [HY96, Proposition 5.3] and using that the Ricci curvature bounded
by |x|−2−q, ∫

N
|Å|2 dσ ≤ cr−qH2|N |.
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If we can prove (3), especially the upper bound, then (1) and (2) follow
directly from the above inequalities.

The lower bound in (3) can be derived by letting |g| = H in the Sobolev
inequality (4.4). For the upper bound, we first observe that the Gauss
equation and the Gauss-Bonnet theorem imply∫

N

1

2
H2 dσ ≤

∫

N
2K + |Å|2 −Rg + 2Ric(µg, µg) dσ

≤ c+ c

(∫

N
|Å|2 + |x|−2−q dσ

)

≤ c+ cr−qH2|N |.
For r large, we can absorb the last term to the left hand side, and prove
(3). �

By the Simons identity ([S68], [SSY75], and [M07]), for any hypersurface
N in M , we have

∆Aαβ = ∇α∇βH +HAδαAδβ − |A|2Aαβ +AδαRεβεδ +AδεRδαβε

+∇β
(
Ricαkν

k
)

+∇δ
(
Rkαβδν

k
)

where the Greek letters ranges over {1, 2}, and the Latin letters ranges over
{1, 2, 3}.
Lemma 4.5.∥∥|Å|2

∥∥
L2 +

∥∥∇|Å|
∥∥
L2 +

∥∥|∇Å|
∥∥
L2 +

∥∥H|Å|
∥∥
L2 ≤ cr−1−q.

Proof.

2|Å|∆|Å|+ 2
∣∣∇|Å|

∣∣2 = ∆|Å|2 = 2Åαβ∆Åαβ + 2|∇Å|2.
By the Cauchy-Schwarz inequality |∇Å|2 ≥

∣∣∇|Å|
∣∣2 and the following esti-

mate (see [SY81] and [M07]),

|∇Å|2 −
∣∣∇|Å|

∣∣2 ≥ 1

17
|∇Å|2 − 16

17

(
|ω|2 + |∇H|2

)

≥ 1

34
|∇Å|2 +

1

34

∣∣∇|Å|
∣∣2 − 16

17

(
|ω|2 + |∇H|2

)

we have

|Å|∆|Å| ≥ Åαβ∆Åαβ +
1

34
|∇Å|2 +

1

34

∣∣∇|Å|
∣∣2 − 16

17

(
|ω|2 + |∇H|2

)

where ω = Ric(·, µg)T denotes the tangential projection of Ric(·, µg) on N .
Because N has constant mean curvature, we substitute the Simons iden-

tity into the above inequality and have

|Å|∆|Å| ≥ HÅαβAδαAδβ − |A|2ÅαβAαβ + ÅαβAδαRεβεδ

+ÅαβAδεRδαβε + Åαβ∇β
(
Ricαkν

k
)

+ Åαβ∇δ
(
Rkαβδν

k
)

+
1

34
|∇Å|2 +

1

34

∣∣∇|Å|
∣∣2 − 16

17
|ω|2. (4.5)
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Integrating −|Å|∆|Å|,
∫

N
|∇|Å||2 +

1

34
|∇Å|2 dσ ≤

∫

N
−HÅαβAδαAδβ + |A|2ÅαβAαβ dσ

−
∫

N
ÅαβAδαRεβεδ + ÅαβAδεRδαβε dσ

−
∫

N

(
Åαβ∇β

(
Ricαkν

k
))

+ Åαβ∇δ
(
Rkαβδν

k
)
dσ

−
∫

N

1

34

∣∣∇|Å|
∣∣2 − 16

17
|ω|2 dσ.

A direct calculation shows the first two terms on the right hand side

−HÅαβAδαAδβ + |A|2ÅαβAαβ = (|A|2 −H2)|Å|2 −HÅαβÅδαÅδβ.

The last term vanishes because M is two-dimensional. Therefore,
∫

N

35

34
|∇|Å||2 +

1

34
|∇Å|2 dσ ≤

∫

N
(|A|2 −H2)|Å|2 dσ

−
∫

N
ÅαβAδαRεβεδ + ÅαβAδεRδαβε dσ

−
∫

N

(
Åαβ∇β

(
Ricαkν

k
))

+ Åαβ∇δ
(
Rkαβδν

k
)
dσ

+

∫

N

16

17
|ω|2 dσ. (4.6)

The second line can be bounded by

c

∫

N
|Å|2|Riem|+ |Å|H|Riem| dσ

Using integration by parts as in [M07], the third line can be bounded by
c
∫
N |ω|2 dσ. We then use the stability to control the first line. Because N

is stable, for any u with mean value ū,
∫

N
|A|2u2 dσ ≤

∫

N
|∇u|2 dσ +

∫

N
|A|2(2uū− ū2) dσ −

∫

N
Ric(µg, µg)(u− ū)2 dσ

≤
∫

N
|∇u|2 dσ +

∫

N

(
|Å|2 +

1

2
H2

)
(2uū− ū2) dσ

+2

∫

N
|Ric|(u2 + ū2) dσ.

Because 2uū− ū2 ≤ u2 and |Ric(x)| ≤ c|x|−2−q, we let u = |Å| and rewrite
the above inequality as follows:
∫

N

(
|A|2 − 1

2
H2

)
|Å|2 dσ ≤

∫

N
|∇|Å||2 dσ + 2ū

∫

N
|Å|3 + 2

∫

N
|x|−2−q (|Å|2 + ū2

)
dσ.
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Multiplying the above inequality by 69/68, adding it to (4.6), and moving
the remaining H2-term to the left,

∫

N
|Å|4 dσ +

∫

N

∣∣∇|Å|
∣∣2 dσ +

∫

N
|∇Å|2 dσ +H2

∫

N
|Å|2 dσ

≤ cū

∫

N
|Å|3 dσ + c

∫

N
|x|−2−q (|Å|2 + ū2

)
dσ + c

∫

N
|Å|H||x|−2−q dσ

+c

∫

N
|x|−4−2q dσ.

Because ‖Å‖L2 ≤ cr− q2 as proven in Lemma 4.4(2), by the Hölder inequality
and Lemma 4.4 (3),

ū2 = |N |−2

(∫

N
|Å| dσ

)2

≤ |N |−1

∫

N
|Å|2 dσ ≤ c|N |−1r−q ≤ cH2r−q.

By Young’s inequality,

cū

∫

N
|Å|3 dσ ≤ 1

4

∫

N
|Å|4 dσ + cr−qH2

∫

N
|Å|2 dσ.

For r large enough, these two terms could be absorbed to the left hand side.
Similarly, the rest of terms

c

∫

N
|x|−2−q (|Å|2 + ū2

)
dσ + c

∫

N
|x|−4−2q dσ

≤ 1

4

∫

N
|Å|4 dσ + r−2−qū2|N |+ cr−2−2q

c

∫

N
|Å|H|x|−2−q ≤ 1

2
H2

∫

N
|Å|2 dσ + cr−2−2q.

We then derive
∥∥|Å|2

∥∥
L2 +

∥∥∇|Å|
∥∥
L2 +

∥∥|∇Å|
∥∥
L2 +

∥∥H|Å|
∥∥
L2 ≤ cr−1−q.

�

4.3. The Position Estimate. In order to prove that N is close to some
sphere pointwisely and is a nice graph, we would like to derive the pointwise
estimate of |Å|. We use the Moser iteration similarly as in [QT07].

Lemma 4.6. For any function u ≥ 0, f ≥ 0, and h on N satisfying

−∆u ≤ fu+ h (4.7)

we have the pointwise control on u as follows:

sup
N
u ≤ c(‖f‖L2 +H + r−1)(‖u‖L2 + rH−1‖h‖L2)
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Proof. Replacing g by g2 in the Sobolev inequality (4.4) and using the Hölder
inequality, we derive a variant of the Sobolev inequality

(∫

N
|g|4 dσ

) 1
2

≤ c
(∫

N
|g||∇g| dσ +

∫

N
H|g|2 dσ

)

≤ c

(∫

N
|g|2 dσ

) 1
2

((∫

N
|∇g|2 dσ

) 1
2

+

(∫

N
H2|g|2 dσ

) 1
2

)
(4.8)

Let k = r‖h‖L2 , and ũ = u+ k. Then multiplying ũp−1 on the both sides of
(4.7)

−ũp−1∆ũ ≤ fũp − kfũp−1 +
h

ũ
ũp ≤ fũp +

h

k
ũp = f̃ ũp

where f̃ = f + k−1h. Integrating the above inequality, we have, for p ≥ 2,
∫

N

∣∣∣∇(ũ
p
2 )
∣∣∣
2
dσ =

∫

N

∣∣∣p
2
ũ
p
2
−1∇ũ

∣∣∣
2
dσ =

∫

N

p2

4
|ũ|p−2|∇ũ|2 dσ

=
p2

4(p− 1)

∫

N
(p− 1)ũp−2|∇ũ|2 dσ

=
p2

4(p− 1)

∫

N
−ũp−1∆ũ dσ

≤ p

2

∫

N
ũpf̃ dσ.

We let g be ũ
p
2 in (4.8) and substitute the gradient term by the above

inequality,

(∫

N
ũ2p dσ

) 1
2

≤ c
(∫

N
ũp dσ

) 1
2

((
p

2

∫

N
ũpf̃ dσ

) 1
2

+

(∫

N
H2ũp dσ

) 1
2

)
.

By the Hölder inequality, the last two terms can be bounded by

(
p

2

∫

N
ũpf̃ dσ

) 1
2

≤
(p

2

) 1
2

(∫

N
ũ2p dσ

) 1
4
(∫

N
f̃2 dσ

) 1
4

,

(∫

N
H2ũp dσ

) 1
2

≤
(∫

N
H4 dσ

) 1
4
(∫

N
ũ2p dσ

) 1
4

.

Therefore, using the above inequalities and Young’s inequality,

(∫

N
ũ2p dσ

) 1
2

≤ 1

2

(∫

N
ũ2p dσ

) 1
2

+
1

4ε1
c
(p

2

) 1
2

(∫

N
ũp dσ

)(∫

N
f̃2 dσ

) 1
2

+
c

4ε2

(∫

N
ũp dσ

)(∫

N
H4 dσ

) 1
2
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where ε1 = (2c
√

2p)−1 and ε2 = (4c)−1. Therefore,
(∫

N
ũ2p dσ

) 1
2

≤ cp
((∫

N
f̃2 dσ

) 1
2

+

(∫

N
H4 dσ

) 1
2

)(∫

N
ũp dσ

)
.

Then,
(∫

N
ũ2p dσ

) 1
2p

≤ c
1
p p

1
p

(
‖f̃‖L2 +H

) 1
p

(∫

N
ũp dσ

) 1
p

.

Now letting p = 2i, i = 1, 2, 3, . . . , we then have
(∫

N
ũ2l+1

dσ

)2−l−1

≤
(
c
(
‖f̃‖L2 +H

))Pl
i=1 2−i

2
Pl
i=1(i2−i)‖ũ‖L2 .

Let l→∞,

sup
N
u ≤ sup

N
ũ ≤ c

(
‖f̃‖L2 +H

)
‖ũ‖L2

≤ c
(
‖f‖L2 + k−1‖h‖L2 +H

) (
‖u‖L2 + kH−1

)

≤ c
(
‖f‖L2 + r−1 +H

) (
‖u‖L2 + rH−1‖h‖L2

)

�
Corollary 4.7.

sup |Å| ≤ c(r−1−q +H−1r−2−q).

Furthermore, if r(N) ≥ H−a for some fixed a with 2/(2 + q) < a ≤ 1, then

sup |Å| ≤ cH1+ε

where ε = (2 + q)a− 2.

Proof. Calculating similarly as in (4.5), |Å| satisfies the following inequality

−|Å|∆|Å| ≤ (|A|2 −H2)|Å|2 − ÅαβAδαRεβεδ
−ÅαβAδεRδαβε − Åαβ∇β

(
Ricαkν

k
)
− Åαβ∇δ

(
Rkαβδν

k
)

≤ c
(
|Å|4 + |Å|2|x|−2−q + |Å|H|x|−2−q + |Å||x|−3−q)

where we have used that |Rijkl| ≤ c|x|−2−q and |∇Rijkl| ≤ c|x|−3−q. There-

fore Å satisfies (4.7) with

f = c(|Å|2 + |x|−2−q)

h = c(H|x|−2−q + |x|−3−q).

By Lemma 4.4(1) and Lemma 4.5,

‖f‖L2 ≤ cr−1−q, ‖h‖L2 ≤ cr−2−q.

Then by Lemma 4.5 and Lemma 4.6,

sup |Å| ≤ c(r−1−q +H + r−1)(H−1r−1−q)

≤ c(H + r)(H−1r−1−q).
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�

After we obtain the estimates on |Å|, we first prove that N can be ap-
proximated by a sphere Sr0(p). The following lemma is essentially the same
as in [HY96, Proposition 2.1], but we remove the conditions on |∇Å| and r̄.

Lemma 4.8. Let N satisfy the same assumptions as in Theorem 2. There
exists p so that for all z ∈ N ,

|λei(z)− r−1
0 | ≤ cH1+ε (4.9)

|λei(z − p)− νe(z)| ≤ cHε (4.10)

|(z − p)− r0νe(z)| ≤ cr0H
ε ≤ cH−1+ε (4.11)

where r0 = 2/H, λei(z) is the principal curvature, and νe(z) is the outward
unit normal vector at z with respect to the Euclidean metric. Moreover, N
is a graph over Sr0(p) so that

N =
{
z = y + νgφ : y ∈ Sr0(p), φ ∈ C1(Sr0(p))

}

with ‖φ∗‖C1 ≤ cH−1+ε.

Proof. By Corollary 4.7, supN |Å| ≤ cH1+ε. Because M is AF, for r large,

sup
N
|Åe| ≤ |Å|+ c|z|−1−q ≤ cH1+ε

|He −H| ≤ cr−1−q ≤ cH1+ε.

We would like to use the bound of these Euclidean quantities to show that
N is close to some sphere in the Euclidean space. To derive (4.9), for any
point z ∈ N ,

∣∣∣∣λei(z)−
1

2
H

∣∣∣∣ ≤
∣∣∣∣λei(z)−

1

2
He(z)

∣∣∣∣+

∣∣∣∣
1

2
He(z)− 1

2
H

∣∣∣∣
≤ |Åe|+ cH1+ε ≤ cH1+ε.

Let r−1
0 = (1/2)H, and then (4.9) follows. For (4.10) and (4.11), we derive

the upper bound on the diameter of N which is defined by the intrinsic
distance on N equipped with its induced metric from the Euclidean space.
Using the Gauss equation for N inside the Euclidean space,

∣∣∣∣RicNij −
1

4
(He)2γjk

∣∣∣∣ ≤ c
(
|He||Åe|+ |Åe|2

)
≤ cH2+ε

=⇒ RicN ≥ 1

8
H2.

for H small. The Bonnet-Myers theorem says that diam(N) ≤ cH−1. Then,
the same argument in [HY96, Proposition 2.1] holds.

To prove that N is a C1-graph over Sr0(p), for any point z ∈ N , we define
ψ(y) = |z−y| where y ∈ Sr0(p) is the intersection of the ray z−a and Sr0(p).
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By (4.10) and assuming H is small, y is uniquely determined, because for
all z ∈ N ∣∣∣∣

z − p
r0
− νe

∣∣∣∣ ≤
1

2
.

In particular, νe never becomes perpendicular to the radial direction, and
then N = {z+ψνe : z ∈ Sr0(p)} is well-defined. To obtain the C1 bound on
ψ, by (4.10) and (4.11),

‖ψ‖C0 ≤ sup
z∈N
|z − y| ≤ sup

z∈N
|(z − p)− (y − p)| = sup

z∈N

∣∣∣∣z − p− r0
z − p
|z − p|

∣∣∣∣

= sup
z∈N
|(z − p)− r0νe|+ sup

z∈N

∣∣∣∣r0νe − r0
(z − p)
|z − p|

∣∣∣∣ ≤ cH−1+ε.

Moreover,

|∂ψ| = |z − y|−1 |〈∇e(z − y), z − y〉| ≤ |∇e(z − p)−∇e(y − p)|

≤ r0

∣∣∣∣∇eνe −∇e
(y − p)
|y − p|

∣∣∣∣+ cr0H
−1+ε

≤ r0|Åe|+ cr0H
−1+ε

≤ cHε

where we have used that the principal curvature of Sr0(p) is r−1
0 . Therefore,

we conclude ‖ψ∗‖C1 ≤ cH−1+ε. Moreover, because νe and νg are close,

N = {z + νeψ : y ∈ Sr0(p)} = {z + νgφ : y ∈ Sr0(p)}
for some φ satisfying ‖φ∗‖C1 ≤ cH−1+ε. �

However, in order to use the Taylor theorem as before, N should be a
graph whose C2,α-norm is under control. Therefore, we have to derive the
pointwise estimate on the C1,α-norm of Å. A modified Moser iteration which
involves a special choice of the cut-off functions as in [QT07] will be proved
in the following for N satisfying the previous estimates.

Lemma 4.9. For any function u ≥ 0, f ≥ 0, and h on N satisfying

−∆u ≤ fu+ h (4.12)

we have the pointwise control on u as follows:

sup
N
u ≤ c

(
(‖f‖L2 +H)‖u‖L2 +H−2‖h‖L2‖f‖L2

)
.

Remark. Compare this lemma with Lemma 4.6, and the undesirable term
H−1‖h‖L2 in estimating |∇Å| is removed.

Proof. We replace k = H−1‖h‖L2 in Lemma 4.6 and define ũ and f̃ the
same as there. Let χ be a cut-off function on N . The same calculations in
Lemma 4.6 give∫

N

∣∣∣∇(χũ
p
2 )
∣∣∣
2
dσ ≤ p

2

∫

N
χ2f̃ ũp dσ +

∫

N
|∇χ|2ũp dσ
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and then
(∫

N
χ4ũ2p dσ

) 1
2

≤ cp
((∫

N
f̃2 dσ

) 1
2

+H + (sup |∇χ|) 1
2

)∫

supp(χ)
ũp dσ.

Let pi = 2i, i = 1, 2, 3, . . . and the cut-off functions supported on N be
defined by,

χi(z) =

{
1 if z ∈ B(1+2−i)δH−1(z0)
0 if z outside B(1+2−i+1)δH−1(z0)

where z0 ∈ N arbitrary, and δ is specified later. Then
(∫

B
(1+2−l)δH−1 (z0)

ũ21+l
dσ

)2−1−l

≤ c
Pl
i=1 2−i2

Pl
i=1 i2

−i


‖f̃‖

Pl
i=1 2−i

L2 +H
Pl
i=1 2−i +

(
2i

δH−1

)Pl
i=1 2−1−i


 ‖ũ‖L2(B2δH−1 (z0)).

Let l→∞,

u(z0) + k = ũ(z0) ≤ c(‖f‖L2 + k−1‖h‖L2 +H + δ−1H)
(
‖u‖L2 + k |B2δH−1(z0)| 12

)
.

We now choose δ so that

c

(∫

B2δH−1 (z0)
H2 dσ

) 1
2

≤ 1

8
.

Most importantly, δ can be chosen independent of H by using that M is AF
and N is a graph over Sr0(p) whose C1-norm is controlled (the area formula
contains only the first derivative of the graph, but no higher derivatives) as
follows:∫

B2δH−1 (z0)
H2 dσ = areag (B2δH−1(z0))H2

≤ 2 areage (B2δH−1(z0))H2 ≤ c(δH−1)2H2 ≤ cδ2

where we have used g is AF and the area formula for the (Euclidean) graph.
Substituting k by H−1‖h‖L2 ,

u(z0) +H−1‖h‖L2 ≤ 1

4
H−1‖h‖L2

+c
(
(‖f‖L2 +H)‖u‖L2 +H−2‖h‖L2‖f‖L2

)
.

Moving the first term on the right hand side to the left, we complete the
proof. �

Corollary 4.10.

sup
N
|∇Å| ≤ c(r−2−2q +Hr−1−q +H−2r−4−2q).
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If r(N) ≥ H−a for some fixed a with 2/(2 + q) < a ≤ 1, then

sup
N
|∇Å| ≤ cH2+ε.

Proof. Let Tγαβ = ∇γÅαβ. Because |∇T |2 ≥ |∇|T ||2 by the Cauchy-Schwarz
inequality,

2|T |∆|T |+ 2 |∇|T ||2 = ∆|T |2 = 2T γαβ∆Tγαβ + 2|∇T |2

=⇒ −|T |∆|T | ≤ −T γαβ∆Tγαβ.

If we would like to derive an inequality for ∆|∇A|, we only need to compute
∇γÅαβ∆

(
∇γÅαβ

)
. Changing the order of differentiation,

∆(∇γÅαβ) = ∇γ∆Åαβ + gρδ(∇εÅαβ)R ε
δ γρ + gρδ(∇δÅεβ)R ε

α γρ

+gρδ(∇δÅαε)R ε
β γρ + gρδ∇ρ

(
ÅεβR

ε
α γδ + ÅαεR

ε
β γδ

)
.

By the Simons identity,
(
∇γÅαβ

)
∇γ∆Åαβ

= H
(
∇γÅαβ

)
∇γ
(
AδαAδβ

)
−
(
∇γÅαβ

)
∇γ
(
|A|2Aαβ

)

+
(
∇γÅαβ

)
∇γ
(
AδαR

M
εβεδ +AδεRδαβε +∇β

(
RicMαkν

k
)

+∇δ
(
Rkαβδν

k
))

≥ −|Å|2|∇Å|2 − c
(
H|∇Å|2|A|+ |∇Å|2|Riem|+ |∇Å||Å||∇Riem|+ |∇Å|H||∇Riem|

+|∇Å||∇2Riem|+ |∇Å|2|∇Riem|
)

Using |Riem| ≤ c|x|−2−q, |∇Riem| ≤ c|x|−3−q, |∇2Riem| ≤ c|x|−4−q, and
combining the above two estimates,

−|∇Å|∆|∇Å|
≤ −∇γÅαβ∆

(
∇γÅαβ

)

≤ c
(
|Å|2|∇Å|2 +H2|∇Å|2 +H|Å||∇Å|2 + |∇Å|2|x|−2−q

+|∇Å||Å||x|−3−q + |∇Å|H||x|−3−q + |∇Å||x|−4−q + |∇Å|2|x|−3−q) .

Then |∇Å| satisfies (4.7) with

f = c(|Å|2 +H2 +H|Å|+ |x|−2−q + |x|−3−q)

h = c(|Å||x|−3−q +H|x|−3−q + |x|−4−q).

Then ‖f‖L2 ≤ cr−1−q and ‖h‖L2 ≤ cr3−q. By Lemma 4.5 and Lemma 4.9,
a direct calculation completes the proof. �

Similarly, we can derive the Hölder norm
[
|∇Å|

]
α
≤ cH2+ε+α. Using the

same argument in Lemma 4.8, we prove the following:

Corollary 4.11. N is a graph defined by N = {z + νgφ : y ∈ Sr0(p)} with

‖φ∗‖C2,α ≤ cH−1+ε ≤ cr1−ε
0 .



Foliations by Stable Spheres with Constant Mean Curvature 35

4.4. Global Uniqueness.

Proof of Theorem 2 . By the Taylor theorem and Corollary 4.11, the mean
curvature H of N is equal to

H = H(Sr0(p)) + ∆Sφ+
(
|AS |2 +RicM (νg, νg)

)
φ+

∫ 1

0
(dH(sφ)− dH(0))φds.

Because Lemma 2.1 (i) and H = 2/r0,

−∆e
S(φ− φ0)− 2

r0
2
(φ− φ0) = f1(y)− f2(y − p) +

A · (y − p)
r3+q

0

+ f̄2

+ (∆S −∆e
S)φ+

(
|AS |2 −

2

r0
2

+RicM (νg, νg)

)
φ

+

∫ 1

0
(dH(sφ)− dH(0))φds (4.13)

We decompose φ = φ⊥ + r−ε0 (B · (y − p)), where

Bα =
3r−4+ε

0

4π

∫

S
φ(yα − pα) dσe = O(1).

Because φ⊥ − φ0 ∈ KerL0, we have

‖φ⊥ − φ0‖C2,α ≤ cr1−2ε
0 .

Moreover,

‖(φ⊥)odd‖C2,α ≤ ‖φodd0 ‖C2,α

+cr2
0

(
r−2−q

0 + r−2−q
0 ‖φ‖+ r−4−q

0 ‖φ‖2 + r−3
0 ‖(φ⊥)odd‖‖φ‖

)

≤ C(r−q0 + r1−2ε−q
0 + r1−4ε

0 ).

Bootstrapping ‖(φ⊥)odd‖C2,α , we derive

‖(φ⊥)odd‖C2,α ≤ cr1−2ε−q
0 .

Integrating (4.13) with yα − pα and using Lemma 2.1 for the first term,

0 =

∫

Sr0 (p)
(yα − pα)f1(y) dσe +

∫

Sr0 (p)
(yα − pα)LSr

−ε
0 (B · (y − p)) dσe

+

∫

Sr0 (p)
(yα − pα)

(
(∆S −∆e

S)φ⊥ −
(
|AS |2 −

2

r2
0

+RicM (νg, νg)

)
φ⊥
)
dσe

+

∫

Sr0 (p)
(yα − pα)

∫ 1

0
(dH(sφ)− dH(0))φds dσe

= 8πm(pα − Cα) +Bαr2−ε
0

6m

r3
0

4πr2
0

3
+ cr3

0

(
r−3−q

0 ‖φ‖+ r−2−q
0 ‖(φ⊥)odd‖

)

+cr3
0

(
r−4−q

0 ‖φ‖2 + r−3
0 ‖(φ⊥)odd‖‖φ‖

)

=⇒ |pα − Cα| ≤ c
(
r1−ε

0 + r
1+(1−q−4ε)
0

)
.
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Recall that ε = (2 + q)a− 2. If a > (9− q)/(8 + 4q),

|pα − Cα| ≤ cr1−ε1 and |pα| ≤ cr1−ε1

for some ε1 > 0. It shows that the center p doesn’t drift away too much.
Let z0 be a point so that r = |z0|,

r = |z0| ≥ |z0 − p| − |p| ≥ r0 − cH−1+ε − cr1−ε1
0 ≥ cr0.

Therefore, we can replace the assumption r ≥ H−a by r ≥ cr0 ≥ cH−1 in
the above estimates and have

sup
N
|Å| ≤ cr−1−q

0 and sup
N
|∇Å| ≤ cr−2−q

0 .

They imply, particularly, N is a cr1−q
0 -graph over Sr0(p) and |p−C| ≤ cr1−q

0 .
Although H may not be exactly equal to H(Σr0), we can choose r1 so that

H = H(Σr1) with r1 = r0 +O(r−q0 ). Then we can apply the local uniqueness
result of Corollary 4.2 by viewing N as a graph over Sr1(a) and conclude
N = Σr1 . �

To prove a result of the uniqueness outside a fixed compact set, we replace

the condition on r by the condition that r̄ and r satisfy r̄ ≤ c2r
a−1

for any
(9− q)/(8 + 4q) < a ≤ 1.

Proof of Theorem 3. If N lies completely outside BH−a(0), by Theorem 3,
N = ΣR. We assume that N 6= ΣR. Therefore N ∩ BH−a(0) 6= φ for any
(9−q)/(8+4q) < a ≤ 1, and then r ≤ H−a ≤ 3Ra if R large enough because
H = (2/R) +O(R−1−q). On the other hand, at z0 where r̄ = |z0|,

2

r̄
≤ He(N)(z0) ≤ H + c|z0|−1−q ≤ 2

R
+ cR−1−q + cr̄−1−q.

For R large,

2

r̄
≤ 4

R
+

1

r̄

and then R/4 ≤ r̄. Therefore,

1

4(3)
1
a

(r)
1
a ≤ 1

4(3)
1
a

(3cRa)
1
a ≤ R

4
≤ r̄.

Choosing any c2 < 1

4(3)
3
2

, we obtain c2r
1
a < r̄ which contradicts to the

assumption. Therefore, N = ΣR. �
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