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Introduction

This is a preliminary report on some findings by the author while he spent the
Fall of 2009 at the Mittag-Leffler Institute in Stockholm, in the program Set
theory and Model theory. The author is deeply grateful to both the organizers
of this programme (for having invited him, although he is neither a set theorist
nor a model theorist) and to the dedicated staff of the MLI (for making his stay
pleasant as well as fruitful).

This paper deals with a notion of ‘homotopy’ one can define in the effective
topos of Martin Hyland ([7]).

In recent years, there has been an upsurge of interest in connections between
abstract homotopy theories and type theory: see [1, 11, 4, 13, 14]. A prominent
area of focus is that of (closed) model categories, first defined by D.G. Quillen
([9]; for modern expositions see [3, 6, 5]). A closed model structure on a category
defines a notion of homotopy, and this is used in order to model the identity
types of Martin-Löf’s Type Theory.

In this paper, the focus is rather different. It may be the case that the
structure described here is part of a closed model structure; but the author
has been unable to establish this (the structure does almost form a ‘fibration
category’ in the sense of [2]; see the end of this paper). It may also turn out
that the effective topos harbors interesting interpretations of Martin-Löf’s Type
Theory, but the author has not investigated this.

Instead, his main motivation has been to find ways to understand the effec-
tive topos in geometric (topological) terms.
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In this paper, it is shown that a sensible notion of ‘path object’, for every
object of the topos, arises out of the so-called ‘discrete reflection’. In the effective
topos, the full subcategory of discrete objects has been thoroughly studied (see,
e.g., [8]). I remind the reader that an object of the effective topos is called
‘discrete’ if it is a quotient of a subobject of the natural numbers object. There
are several equivalent characterizations of the discrete objects, among which:

An object X is discrete if and only if the canonical map from X to
the exponential XP(N) is an isomorphism, where P(N) denotes the
power object of the natural numbers.

Easy proofs of this and related facts may be found in [12]. The fact above means
that the discrete objects are defined by an orthogonality property, and hence
enjoy good completeness properties relative to the effective topos. In particular,
the inclusion of the discrete objects as full subcategory of the effective topos has
a left adjoint, which is called the ‘discrete reflection’.

Part of the significance of the present paper is to provide a new and very
concrete, intuitive meaning to the word ‘discrete’. Indeed, my notion of ‘path’
will be such that:

1) An object X is discrete if and only if there are no nontrivial (= noncon-
stant) paths in X

2) The discrete reflection of X is (internally) the set of path components of
X

This should lead, hopefully, to a study of ‘topological’ properties of non-discrete
objects. For, the non-discrete part of the effective topos has not been studied
nearly as extensively as the discrete part (for example, the following question
has, to my knowledge, not been answered: which objects Y have the property
that X → XY is an isomorphism, for every discrete object X?).

Note, by the way, that the properties of ‘paths’ above imply that there is
no connection to the real line. Indeed, in the effective topos the object of real
numbers is discrete!

We obtain sensible interpretations of standard notions from topology. For
example, an object is path connected if and only if its discrete reflection is
isomorphic to the terminal object; an object is simply connected if it is path
connected and its fundamental group is trivial. We shall see that these notions
do not coincide: we have ‘circles’ whose fundamental group is isomorphic to Z.

Preliminaries. For the sake of self-containedness, I give the definition of the
effective topos as a category. From now on, it will be denoted by Eff . You are
referred to [7] and [12] for further information.

The category Eff is built on the notion of a computable function on the
natural numbers.

An object is a pair (X,∼) where X is a set and ∼ is a function from X ×X
to the set P (N) of subsets of N, usually written as x, y 7→ [x ∼ y]. This
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function ∼ has to satisfy the requirement that there exist computable functions
s (symmetry) and t (transitivity), such that the following hold:

- if a ∈ [x ∼ y] then s(a) ∈ [y ∼ x]

- if a ∈ [x ∼ y] and b ∈ [y ∼ z] then t(a, b) ∈ [x ∼ z]

The set [x ∼ y] is called the equality of x and y.
Given two objects (X,∼) and (Y,≈), a morphism (X,∼) → (Y,≈) is rep-

resented by a function F : X × Y → P (N) for which there exist computable
functions stX , stY (strictness), relX , relY (relationality), tl (totality) and sv

(single-valuedness), satisfying:

- if a ∈ F (x, y) then stX(a) ∈ [x ∼ x] and stY (a) ∈ [y ≈ y]

- if a ∈ F (x, y), b ∈ [x′ ∼ x] and c ∈ [y ≈ y′] then relX(b, a) ∈ F (x′, y) and
relY (a, c) ∈ F (x, y′)

- if a ∈ [x ∼ x] then tl(a) ∈
⋃

y∈Y F (x, y)

- if a ∈ F (x, y) and b ∈ F (x, y′) then sv(a, b) ∈ [y ≈ y′]

Two such functions F,G determine the same morphism (X,∼) → (Y,≈) if there
is a computable function φ such that whenever a ∈ F (x, y), φ(a) ∈ G(x, y) (this
is an equivalence relation on functions which represent a morphism).

We shall write 〈a1, . . . , an〉 for the natural number which codes the finite
tuple of natural numbers (a1, . . . , an) in some coding for which all the operations
one wishes to perform are given by computable functions: e.g., determining the
length of a sequence coded by x, computing the code of the sequence which
is the concatenation of the sequences coded by x and y, determining the i’th
element of the sequence coded by x, etc.

For an object (X,∼) and x ∈ X we shall often write E(x) for [x ∼ x]. E(x)
is called the existence of x.

Example 1. Suppose (X,∼) and (Y,≈) are objects of Eff and f : X → Y is a
function such that there exist computable functions φ and ψ satisfying:

- whenever a ∈ E(x), φ(a) ∈ E(f(x))

- whenever a ∈ [x ∼ x′], ψ(a) ∈ [f(x) ≈ f(x′)]

Then the following function F represents a morphism (X,∼) → (Y,≈):

F (x, y) =
⋃

x′∈X

{〈a, b〉 | a ∈ [x ∼ x′], b ∈ [f(x′) ≈ y]}

Let us say that this morphism is induced by the function f .

Example 2. If (X,∼) is an object of Eff , then a subobject of (X,∼) is deter-
mined by a function F : X → P (N) for which there exist computable functions
φ and ψ satisfying
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- if a ∈ F (x) then φ(a) ∈ E(x)

- if a ∈ F (x) and b ∈ [x ∼ x′] then ψ(a, b) ∈ F (x′)

The subobject determined by F is then represented by the object (X,∼′) where

[x ∼′ y] = {〈a, b〉 | a ∈ F (x), b ∈ [x ∼ y]}

Example 3. An assembly is an object (X,∼) which is such that [x ∼ y] = ∅
if x 6= y. Hence, an assembly is given by a map E : X → P (N). The assem-
blies are (up to isomorphism) the ¬¬-separated objects of Eff . An assembly is
called canonically projective if E(x) is a singleton for each x. These are (up to
isomorphism) the projective objects of Eff .

Every morphism into an assembly is induced by a unique function on the
level of sets, as in Example 1.

1 Intervals and Paths

Since, in Eff , the object of real numbers is discrete, it will come as no surprise
that the ‘intervals’ defined here have nothing to do with the unit interval [0, 1]
of real numbers.

Definition 1.1 Let A = {α0, α1, . . .} and B = {β0, β1, . . .} be two disjoint
countable sets. The generic interval of length n is the object (X,∼) where
X = {α0, . . . , αn, β0, . . . , βn} and ∼ is given by:

[αi ∼ αi] = {i} [αi ∼ αj ] = ∅ if i 6= j

[βi ∼ βi] = {i+ 1} [βi ∼ βj ] = ∅ if i 6= j

[αi ∼ βi] = {〈i, i+ 1〉} [αi ∼ βj ] = ∅ if i 6= j

[βi ∼ αi] = {〈i+ 1, i〉} [βi ∼ αj ] = ∅ if i 6= j

This object is denoted In.

I prefer to visualize the object In in the following way:

αn
〈n+1,n〉

〈n,n+1〉
βn

...

α2
〈3,2〉

〈2,3〉
· · ·

α1
〈2,1〉

〈1,2〉
β1

α0
〈1,0〉

〈0,1〉
β0

0 1 2 · · · n n+ 1

That is, nontrivial equalities are given by labelled horizontal lines; elements on
the same vertical line have the same existence.
The following facts about In are easily established and left to the reader.
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Proposition 1.2

1) Let Kn be the canonically projective object ({α0, . . . , αn, β0, . . . , βn}, E)
with E(αi) = {i} and E(βi) = {i + 1}. Let [n + 1] be the canonically
projective object (finite cardinal) ({0, . . . , n}, E) with E(i) = {i}. Then
there are morphisms f, g : [n + 1] → Kn, given by f(i) = αi, g(i) = βi,
such that there is a coequalizer diagram

[n+ 1]
f

//

g
// Kn

// In

2) The object In is ¬¬-separated, and isomorphic to the assembly Ĩn =
({0, . . . , n}, E) with E(i) = {i, i+ 1}.

Fact i) of proposition 1.2 makes it easy to describe the exponentials (X,∼)In .
For, we have an equalizer diagram

(X,∼)In // (X,∼)Kn
//
// (X,∼)[n+1]

and hence, by the well-known formation of exponentials in the case that the
exponent is canonically projective, we see that (X,∼)In has as underlying set
the set of functions from {α0, . . . , αn, β0, . . . , βn} to X , where the existence of
such a function f is the set of coded pairs 〈σ, τ〉 such that σ is a coded tuple
〈c0, . . . , cn+1〉 satisfying ci ∈ E(f(αi)) for 0 ≤ i ≤ n and ci ∈ E(f(βi−1)) for
1 ≤ i ≤ n+1; and τ is a coded tuple 〈a0, . . . , an〉 such that ai ∈ [f(αi) ∼ f(βi)]
for 0 ≤ i ≤ n. The equality between two such functions f and g is the set of
coded tuples ν = 〈d0, . . . , dn+1〉 such that di ∈ [f(αi) ∼ g(αi)] for 0 ≤ i ≤ n,
and di ∈ [f(βi−1) ∼ g(βi−1)] for 1 ≤ i ≤ n+ 1.

Definition 1.3 A morphism In
F
→ Im is called order and endpoint preserving if

the unique function f : {0, . . . , n} → {0, . . . ,m} which induces the correspond-
ing arrow Ĩn → Ĩm (via the isomorphism of 1.2 2) ), is order-preserving and
satisfies f(0) = 0, f(n) = m.

Proposition 1.4 Every order and endpoint preserving map In → Im is surjec-
tive; hence such maps exist if and only if n ≥ m.

Proof. Consider f : {0, . . . , n} → {0, . . . ,m}. If i ∈ {0, . . . ,m} is not in the
image of f then i 6= 0 and i 6= m (since f is endpoint preserving) so there must
be an element j ∈ {0, . . . , n} such that f(j) < i and f(j + 1) > i. But then, in
Ĩm, E(f(j)) ∩ E(f(j + 1)) = ∅ whereas in Ĩn, j + 1 ∈ E(j) ∩ E(j + 1). So f
cannot induce a morphism in Eff .

Definition 1.5 Let (X,∼) be an object of Eff . The path object of (X,∼),
denoted P(X,∼), is defined as follows.

Its underlying set is the set of all pairs (n, f) with n ∈ N and f is a function
from {α0, β0, . . . , αn, βn} to X .

Given two such pairs (n, f) and (m, g), the equality [(n, f) ∼ (m, g)] between
them is the set of all coded triples 〈a, s, b〉 satisfying:
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a) a ∈ E(f) as element of (X,∼)In

b) b ∈ E(g) as element of (X,∼)Im

c) there is an order and endpoint preserving morphism σ : In → Im such that
s ∈ [f ∼ gσ] in the sense of (X,∼)In ; or there is an order and endpoint
preserving morphism σ : Im → In such that s ∈ [fσ ∼ g] in the sense of
(X,∼)Im

Proposition 1.6

i) The construction of P(X,∼) extends to a functor P : Eff → Eff which
preserves products.

ii) The object P(X,∼) comes equipped with well-defined maps:

s (source), t (target): P(X,∼) → (X,∼)

c (trivial path): (X,∼) → P(X,∼)

∗ (composition of paths): P(X,∼)×(X,∼) P(X,∼) → P(X,∼), where
the domain is the pullback

P(X,∼)×(X,∼) P(X,∼)

��

// P(X,∼)

s

��

P(X,∼)
t

// (X,∼)

(̃·) (converse path): P(X,∼) → P(X,∼)

With these data, P(X,∼) is an internal category in Eff which has a con-
travariant involution which is the identity on objects.

Proof. I leave most of this to the reader. That P preserves products is a con-
sequence of the equality relation we defined on P(X,∼), which ensures that we
“can assume that two paths are of the same length”, i.e. for (n, f) representing
an element of P(X,∼) and a ∈ E(n, f) we can, for each m ≥ n, find an element
(m, f ′) and an element of [(n, f) ∼ (m, f ′)].

For functions f : {α0, β0, . . . , αn, βn} → X and g : {α0, β0, . . . , αm, βm} →
X let f ∗ g : {α0, β0, . . . , αn+m, βn+m} → X be the function defined by

f ∗ g(αi) =

{
f(αi) i ≤ n

g(αi−n) i > n

f ∗ g(βi) =

{
f(βi) i < n

g(βi−n i ≥ n

Then composition of paths is represented by the function which sends a triple
(n, f), (m, g), (k, h) to the set of coded 4-tuples 〈a, b, c, d〉 such that a ∈ E(f),
b ∈ E(g), c ∈ [f(βn) ∼ g(α0)] and d ∈ [(k, h) ∼ (n+m, f ∗ g)]. Here E(f), E(g)
refer to the existence of (X,∼)In , (X,∼)Im respectively.
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Composition is strictly associative. It is another consequence of the particu-
lar equality on P(X,∼) that the trivial (constant) paths are strict identities for
composition.

For the following proposition, I find it convenient to visualise paths in (X,∼) in
the way of the picture for In; so if f : {α0, β0, . . . , αn, βn} → X represents such
a path, xi = f(αi) and yi = f(βi) and 〈σ, τ〉 ∈ E(f) in the sense of (X,∼)In ,
so σ = 〈c0, . . . , cn+1〉, τ = 〈a0, . . . , an〉, we picture f as

xn an

yn

...

x1
a1

y1

x0 a0

y0

c0 c1 c2 · · · cn cn+1

Such a path proceeds (in X ) by alternately taking a horizontal and a vertical
step: a horizontal step involves an equality in (X,∼), a vertical step involves
an element in the intersection of the existences.

Proposition 1.7 There is a morphism P(X,∼) × P(X,∼)
L
→ PP(X,∼) such

that, internally in Eff , s(L(f, g)) = f ∗ g and t(L(f, g)) = g.

Proof. We do this for the special case that g is constant; the generalization to
the statement in the proposition is straightforward and left to the reader.

So, we wish to show that there is L : P(X,∼) → PP(X,∼) such that sL =
idP(X,∼) and tL = ct:

P(X,∼)

id
&&

L

L

L

L

L

L

L

L

L

L

L
// PP(X,∼)

s

��

P(X,∼)

P(X,∼)

t

��

L
// PP(X,∼)

t

��

P(X,∼)
c

// P(X,∼)

First we show that there is a map Lk : (X,∼)Ik → ((X,∼)Ik )Ik these properties.
It induced by the function `k described now:

Suppose f represents an element of (X,∼)Ik :

xn an

yn

...

x1
a1

y1

x0 a0

y0

c0 c1 c2 · · · cn cn+1
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Then `k(f) is the path (f0, p0, . . . , fk, pk) defined inductively. Let f0 = f . Now
suppose inductively that fi is the path

xk ak

yk

...

xi+1 · · ·

xi ai

yi

...

xi ci
xi · · ·

xi ci
xi

ci ci ci · · · ci ci+1 · · · ck ck+1

Then we can take a horizontal step, obtaining pi, which is

xk ak

yk

...

xi+1 · · ·

yi
ci+1

yi

...

yi
ci+1

yi · · ·

yi
ci+1

yi

ci+1 ci+1 ci+1 · · · ci+1 ci+1 · · · ck ck+1

We have 〈ai, . . . , ai, ci+1, . . . , ck+1〉 ∈ [fi ∼ pi]. Subsequently, we take a vertical
step, obtaining fi+1 from pi. Clearly, pk is the constant path at yk. This defines
the function `k.

In order to see that `k really induces a morphism (X,∼)Ik → ((X,∼)Ik )Ik ,
suppose f, g represent elements of (X,∼)Ik and γ = 〈γ0, . . . , γk+1〉 ∈ [f ∼ g].
If f is the sequence (x0, y0, . . . , xk, yk) and g is (z0, w0, . . . , zk, wk), then γ0 ∈
[x0 ∼ z0], γi ∈ [xi ∼ zi] ∩ [yi−1 ∼ wi−1] for 1 ≤ i ≤ k, and γk+1 ∈ [yk ∼ wk ].

Then if `k(f) = (f0, p0, . . . , fk, pk) and `k(g) = (g0, h0, . . . , gk, hk), one sees
by induction that γ ∈ [f0 ∼ g0], that 〈γi, . . . , γi, γi+1, . . . , γk+1〉 is an element of
[fi ∼ gi] ∩ [pi−1 ∼ hi−1] for 1 ≤ i ≤ k, and 〈γk+1, . . . , γk+1〉 is in [pk ∼ hk]. So
if ρi = 〈γi, . . . , γi, γi+1, . . . , γk+1〉, then

ρ = 〈ρ0, . . . , ρk+1〉 ∈ [`k(f) ∼ `k(g)]

So we have a well-defined morphism Lk : (X,∼)Ik → ((X,∼)Ik)Ik .
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The next step is to see that the maps Lk extend to a map L : P(X,∼) →
PP(X,∼): that is, that they interact well with the equality relation on P(X,∼).

Let ` be the function which sends (k, f) (where f represents an element of
(X,∼)Ik) to (k, `k(f)). We have to see that there is a computable function
φ such that whenever a ∈ [(k, f) ∼ (m, g)] then φ(a) ∈ [`(k, f) ∼ `(m, g)].
From a we can computably extract k and m and hence their maximum; say
this is m. Then we only have to consider order and endpoint preserving maps
Im → Ik. Such a map is a composition of maps σj induced by functions tj :
{0, . . . , k + 1} → {0, . . . , k} of the form: tj(i) = i for i ≤ j, and tj(i) = i − 1
otherwise. Then the resulting map (X,∼)σj : (X,∼)Ik → (X,∼)Ik+1 is induced
by the function sj which sends

f = (x0, y0, . . . , xk, yk)

to
sj(f) = (x0, y0, . . . , xj , xj , xj , yj , xj+1, . . . , xk, yk)

Suppose a ∈ [(k, f) ∼ (k+1, g)] so (ignoring irrelevant information) a ∈ [sj(f) ∼
g] in (X,∼)Ik+1 . From a we find elements a1 ∈ E(sj(f)), a2 ∈ E(f) and
a3 ∈ [`k+1(sj(f)) ∼ `k+1(g)] (the last since `k+1 induces a morphism as we have
seen). It suffices therefore to find an element of

[(k, `k(f)) ∼ `k+1(sj(f))]

which does not depend on j.
Now from the definition of `k it is clear that if `k(f) = (f0, g0, . . . , fk, gk)

then

`k+1(sj(f)) = (sj(f0), sj(g0), . . . , sj(fj), sj(gj), sj(fj), sj(gj), sj(fj+1), . . . , sj(gk))
= sj(sj(f0), sj(g0), . . . , sj(fk), sj(gk))

So from a3 we find an element of

[`k+1(sj(f)) ∼ (sj(f0), . . . , sj(gk))]

and successively elements of [sj(fi) ∼ fi], hence (by the equality of function
spaces) an element of

[(sj(f0), . . . , sj(gk)) ∼ (f0, . . . , gk)]

Combining, we get the desired element of [`k+1(sj(f)) ∼ `k(f)].

2 Discrete and Path connected objects

In the effective topos, an object is called discrete if it is a subquotient of the
object of natural numbers N . The object N is the canonically projective object
with underlying set N, and E(n) = {n}. The following characterization of the
discrete objects is taken from [12], 3.2.20.
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Proposition 2.1 An object (X,∼) of Eff is discrete if and only if there is a
computable function φ such that for all x, x′ ∈ X we have: if n ∈ E(x) ∩ E(x′)
then φ(n) ∈ [x ∼ x′]. This is the case if and only if (X,∼) is isomorphic to an
object (Y,∼) for which we have E(y) ∩E(y′) = ∅ whenever y 6= y′.

Let Effd be the full subcategory of Eff on the discrete objects. Effd is a very
rich category: it contains all of ‘constructive mathematics’.

The inclusion functor Effd → Eff has a left adjoint which preserves products:
the discrete reflection.

Definition 2.2 ([12], 3.2.19iii)) The discrete reflection of an object (X,∼),
denoted (X,∼)d, is the object with underlying set

⋃
x∈X E(x), and with the

following equality: [n ∼ m] consists of all coded sequences

σ = 〈n0, a0, n1, . . . , nk, ak, nk+1〉

satisfying: for each i ≤ k there are xi, yi ∈ X such that ni ∈ E(xi), ni+1 ∈ E(yi)
and ai ∈ [xi ∼ yi].

The universal arrow η : (X,∼) → (X,∼)d is represented by the function

H(x,m) =
⋃

n∈E(x)

[n ∼ m]

It is easily verified that η is always an epimorphism. Now from the definition
of P(X,∼) in the previous section it should be obvious that the kernel pair of η
is just the image of the map (s, t) : P(X,∼) → (X,∼)× (X,∼). Furthermore,
since Effd is a full subcategory of Eff we have that η is an isomorphism if and
only if (X,∼) is discrete. Summarizing:

Proposition 2.3

i) An object of Eff is discrete if and only if it is internally true that there
are no nonconstant paths

ii) The discrete reflection is, internally, the set of path components.

We shall therefore call an object path connected if its discrete reflection is iso-
morphic to 1, the terminal object of Eff .

3 Homotopy and Fundamental Group(oid)

Two maps f, g : (X,∼) → (Y,∼) are homotopic if there exists a homotopy from
f to g, that is: a map H : (X,∼) → P(Y,∼) such that sH = f and tH = g.
By composition of paths, converse paths and constant paths, homotopy is an
equivalence relation.

For paths in (X,∼) there is the further notion of endpoint preserving homo-
topy. This is an element H of PP(X,∼) such that both P(s)(H) and P(t)(H)
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are constant paths. The picture is:

s(s(H))

P(s)(H)

s(H)
t(s(H))

P(t)(H)H

s(t(H))
t(H)

t(t(H))

Composition of homotopies is “vertical composition”:

s(s(H))

P(s)(H)

s(H)
t(s(H))

P(t)(H)H

s(t(H))

P(s)(G)

t(H)=s(G)
t(t(H))

P(t)(G)G

s(t(G))
t(G)

t(t(G))

⇒

s(s(H))
s(H)

t(s(H))

H ∗G

s(t(G))
t(G)

t(t(G))

We also have “horizontal composition”: if P(t)(H) = P(s)(G) then the pair
(H,G) is actually a path in the object P(X,∼) ×(X,∼) P(X,∼) and we have
H ◦G = P(∗)(H,G):

s(H) s(G)

H G

t(H) t(G)

⇒

s(H)∗s(G)

H ◦G

t(H)∗t(G)

which is a homotopy from s(H) ∗ s(G) to t(H) ∗ t(G).
It is easy to see that the map L from proposition 1.7, satisfying sL(f) = f

and tL(f) = ct(f), preserves the endpoint: P(t)(L(f)) = c(t(f)).
Using this map L and horizontal composition, one readily verifies that there

is, for each f ∈ P(X,∼), and endpoint preserving homotopy from c(s(f)) to
f ∗ f̃

Definition 3.1 Let (X,∼) be an object of Eff and x : 1 → (X,∼) a base point.
The fundamental group of (X,∼) with base point x, or π1((X,∼), x), is the set
of enpoint preserving homotopy classes of paths from x to x, with composition
of paths as operation.

The fundamental group is in fact a group: composition is well defined on ho-
motopy classes by horizontal composition, and strictly associative, the constant
path on x is the unit, and f̃ is a two-sided inverse for f . As usual, if (X,∼)
is path connected the fundamental group does not really depend on the base
point and we can omit it.
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Definition 3.2 An object is simply connected if it is path connected and its
fundamental group is trivial.

We can also define, for each (X,∼), the fundamental groupoid of (X,∼): its ob-
ject of objects is (X,∼), its object of arrows is the object of endpoint preserving
homotopy classes of paths.

As an example, I now briefly discuss “circles”. A circle, naturally, is constructed
by identifying the endpoints of an interval.

Definition 3.3 The circle Cn is defined by the coequalizer diagram

1
0

//

n
// Ĩn

// Cn

Proposition 3.4 For n 6= 2, the object Cn is separated. In fact, C0
∼= C1

∼= 1
and for n > 2, the object Cn is isomorphic to the assembly ({0, . . . , n − 1}, E)
with

E(0) = {0, 1}, . . . , E(n− 2) = {n− 2, n− 1}, E(n− 1) = {n− 1, 0}

Proof. Straightforward calculation.

One can show that the object C2, which has 2 points, is not separated.

Proposition 3.5 For each n > 2, π1(Cn) ∼= Z.

Proof. This follows standard lines. First one defines the “line” R: it is the
object (Z, E) with

E(n) = {2n− 1, 2n+ 1} n > 0
E(0) = {0, 1}
E(n) = {2n, 2n+ 2} n < 0

One observes that R is simply connected and that the map R → Cn given by
m 7→ m mod n is a “universal covering”: it has the unique path lifting and
homotopy lifting properties.

Consider both R and Cn as equipped wit the base point 0. The map from
π1(Cn, 0) to R, sending a homotopy class of a path to the target of its lifting,
is well-defined and gives a bijection from π1(Cn, 0) to Z. Composition of paths
corresponds under this map to addition, so the required isomorphism is there.

Of course, in Eff we also have ‘tori’ Tn = Cn×Cn and since we can prove that
π1 is a functor from Eff∗ (the category of objects of Eff with a base point, and
base point preserving maps) to the category of groups and preserves products,
we have

π1(Tn) = Z× Z

for n > 2.
Simlarly, we can discuss ‘wedges of circles’, etcetera.
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4 Homotopy equivalences and Hurewicz fibra-
tions

Definition 4.1

a) An arrow f : (X,∼) → (Y,∼) embeds (X,∼) as strong deformation retract
into (Y,∼) if there is a map F : (Y,∼) → P(Y,∼) with the properties:

i) sF = id(Y,∼)

ii) the diagram

(X,∼)

f

��

c
// P(X,∼)

P(f)

��

(Y,∼)
F

// P(Y,∼)

commutes, i.e. for x ∈ (X,∼), F (f(x)) is the constant path on f(x)

iii) the map tF factors through f

b) An arrow f : (X,∼) → (Y,∼) is a homotopy equivalence if there is an
arrow g : (Y,∼) → (X,∼) such that fg is homotopic to id(Y,∼) and gf is
homotopic to id(X,∼).

Clearly, every embedding as strong deformation retract is a homotopy equiva-
lence.

Proposition 4.2 The map c : (X,∼) → P(X,∼) embeds (X,∼) as strong
deformation retract into P(X,∼).

Proof. Use L.

Definition 4.3 Given f : (X,∼) → (Y,∼), denote by Cf the object defined by
the pullback square

Cf

��

// (X,∼)

f

��

P(Y,∼)
s

// (Y,∼)

So, Cf = {(α, x) ∈ P(Y,∼)× (X,∼) | s(α) = f(x)}.
Let νf : P(X,∼) → Cf be the map defined by the commutative diagram

P(X,∼)

P(f)

��

s
// (X,∼)

f

��

P(Y,∼)
s

// (Y,∼)

i.e., νf (ω) = (P(f)(ω), s(ω)).
The map f is called a Hurewicz fibration if the map νf has a section.
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Our definition of ‘Hurewicz fibration’ is equivalent to the standard one for topo-
logical spaces, and is a rewrite in a language with no interval, but only path
objects.

Proposition 4.4 Every arrow f : (X,∼) → (Y,∼) in Eff factors as an embed-
ding as strong deformation retract, followed by a Hurewicz fibration.

Proof. This follows the usual definition for topological spaces. Factor f as

(X,∼)
ι

// Cp
π

// (Y,∼)

where ι(x) = (x, c(f(x))) and π(x, ω) = t(ω). Analogously to the embedding
(X,∼) → P(X,∼), ι is easily seen to be an embedding as strong deformation
retract. For the other map π, we have to show that the map

P(Cf )
(s,P(π))
→ Cπ

has a section.
The object Cπ is internally defined as

Cπ = {((x, ω), η) ∈ Cf × P(Y,∼) | f(x) = s(ω), t(ω) = s(η)}

A typical element of P(Cf ) is a pair (α,H) where α is a path in (X,∼) and H
is a path in P(Y,∼) with P(s)(H) = P(f)(α), so f(s(α)) = s(s(H)).

Now for ((x, ω), η) ∈ Cπ we have to find (α,H) such that s(H) = ω and
P(t)(H) = η. But we can use proposition 1.7 again: let α be c(f(x)) and H be
the path from ω to ω∗η such that P(s)(H) is constant on f(x) and P(t)(H) = η.
So indeed, π is a Hurewicz fibration.

Remarks

1) In an old paper by Arne Strøm ([10]) it is shown that there is a closed
model structure on the category of topological spaces in which the fibra-
tions are the Hurewicz fibrations, the weak equivalences are the homotopy
equivalences and the cofibrations are the ‘Hurewicz cofibrations’, that is in
our terminology: all maps which have the left lifting property with respect
to all maps P(X)

s
→ X . I have not been able to find good factorizations

as Hurewicz cofibrations followed by trivial fibrations, and I doubt they
exist.

2) H.J. Baues ([2]) proposes the following relaxation of the notion of closed
model structure: the notion of a fibration category. It is a category to-
gether with two classes of maps, the fibrations and the weak equivalences
satisfying the following requirements (in stating them, I assume that we
work in a category with pullbacks):

F1 Every isomorphism is both a fibration and a weak equivalence; fibra-
tions are closed under composition and weak equivalences satisfy the
2-out-of-3 property

14



F2 Fibrations are stable under pullback and weak equivalences are sta-
ble under pullback along fibrations. Also, trivial fibrations (that is:
fibrations which are also weak equivalences) are stable under pullback

F3 Every arrow factors as a weak equivalence followed by a fibration

F4 Call an object cofibrant if every trivial fibration into it has a sec-
tion. For each object X there is a cofibrant object QX and a trivial
fibration QX → X .

The structure we desribed on Eff with homotopy equivalences as weak
equivalences, and Hurewicz fibrations as fibrations, satisfies at least F1,F3
and F4 (due to time pressure when writing this paper the author was not
able to check F2). That F4 holds is an easy consequence of the observation
that every Hurewicz fibration which is also a homotopy equivalence, must
have a section, so every object is cofibrant.

Acknowledgement I like to thank Benno van den Berg for fruitful discussions.
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