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We assume we work with a large strictly stable homogeneous monster model
ç, and that (π = cf(π) > λr(ç))L. Let caP(λr(ç))PIPç

π be the collection of
pairs (A ,B) ∈ L of locally Fç

λr(ç)-saturated elementary substructures of ç
with universe π such that there is a cardinal- and P(λr(ç))-preserving exten-
sion of L in which A ∼= B. We show that caP(λr(ç))PIPç

π is equiconstructible
with 0#.

The proof uses a novel method that does away with the need for a linear
order on the skeleton.

1 Introduction

The results we give here are part of a larger project to prove strong non-structure
results for non-elementary classes. The original impetus comes from work to
generalize the results of [FHR03] to the Homogeneous Model Theory context.
The main theorem of that earlier work was:

Theorem ([FHR03]). Assume 0# exists, and let T be a constructible first-order
theory which is countable in Gödel’s constructible universe L. Then the following
are equivalent:

1. The collection

{〈A ,B〉 ∈ L : A |= T,B |= T,A ,B have universe (ℵ2)L,

and are isomorphic in an extension of L with the same
cardinals and reals as L} (1)

is constructible.

2. The theory T is superstable with NOTOP and NDOP.

This result was proved using strong non-structure theorems, following the
cases found in the Main Gap Theorem [She90].

We chose the Homogeneous Model Theory context to extend this result
because of its well developed Main Gap Theorem [HS01]. Much of the difficulty
lies in finding strong non-structure theorems in the Homogeneous Model Theory
(HMT) context. While one can prove strong non-structure theorems in non-
elementary contexts (e.g. Abstract Elementary Classes) with the order property
in exactly the same way as was done for unstable first order theories, strong non-
structure theorems have not been proved for almost any other non-elementary
classes. This is because the only first-order strong non-structure that can be
generalized is the one stemming from the order property.

In this paper, we prove a strong non-structure theorem for the strictly sta-
ble (stable but not superstable) case in HMT. In the first-order context, non-
structure theorems for the strictly stable case are proved by first finding tree
indiscernibles, and then using them as skeleta in an Ehrenfeucht-Mostowski
model construction. In the HMT context, a major problem arises in simply
generalizing the approach used in the first-order context: without large cardi-
nals one cannot find tree-indiscernibles. In particular, even if one were willing
to assume large cardinals, if one wants to make the constructions in L, as we
do in this paper, Ehrenfeucht-Mostowski model constructions cannot be used.
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2 Preliminaries

2.1 Notation

Gödel’s constructible universe will be denoted as L. To differentiate, similarity
types (languages) will be denoted with the calligraphic L.

2.2 Set Theory

2.2.1 Relative constructibility

This paper is concerned with examining the solvability (in the sense of [Fri03])
of certain problems in the classification of structures that are not-first order
axiomatizable. Our intuition is that if the collection of constructible objects
that satisfy a particular condition is constructible (i.e. in L), then we say that
the condition’s problem is solvable. On the other hand, if the collection is not
in L, then we say that the condition’s problem is unsolvable.

We will demonstrate the unsolvability of a problem by reducing to it sets
that are known to be non-constructible, indeed sets that are equiconstructible
with 0#.

First, some notation:

Definition 2.1. We have the following notion of reduction:
Suppose that 〈X0, X1〉, 〈Y0, Y1〉 are pairs of disjoint subsets of the constructible
universe L. That is, that they are disjoint collections of constructible sets. Note
that 〈X0, X1〉 and 〈Y0, Y1〉 need not be constructible themselves. We write that

〈X0, X1〉
L−→ 〈Y0, Y1〉

if there exists a constructible function g ∈ L such that

x ∈ X0 ⇒ g(x) ∈ Y0 and x ∈ X1 ⇒ g(x) ∈ Y1.

We write X0 instead of 〈X0, X1〉 in the case that X0 is the complement of
X1 within some constructible set. We employ the analogous convention for the
Ys.

The idea behind this notion of reduction is that if 〈X0, X1〉 is non-construc-
tible, X0 ∪ X1 is constructible, and 〈X0, X1〉

L−→ 〈Y0, Y1〉, then 〈Y0, Y1〉 is also
non-constructible.

Definition 2.2.

1. A cardinal preserving extension of L is a transitive model satisfying
the Axiom of Choice containing all the ordinals, and which is contained
in a set-generic extension of V and has the same cardinals as L.

2. A cardinal- and real-preserving extension of L is a transitive model
satisfying the Axiom of Choice containing all the ordinals, and which is
contained in a set-generic extension of V and has the same cardinals and
real numbers as L.

3. For ν a cardinal, a cardinal- and P(ν)-preserving extension is defined
analogously.
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We also remind the reader of the following highly non-constructible object:

Definition 2.3. If there exists a non-trivial elementary embedding of the con-
structible universe L into itself, then there is a closed unbounded proper class
of ordinals that are indiscernible for the structure (L,∈). Then, we can define
0# (“zero-sharp”) to be the real number that codes in the canonical way the
Gödel numbers of the formulas that are true about the indiscernibles in L.

The existence of 0# is independent of the axioms of set theory, ZFC. If ZFC
is consistent, then so is ZFC with the assumption that 0# does not exist. It is
commonly assumed that ZFC is consistent with the assumption that 0# does
exist.

We assume throughout that 0# exists.
The real number 0# is highly non-constructible object. Our intuition will

be to show that a class of models is non-constructible by reducing 0# to it, in
the sense above. In particular, we will use the following theorem.

Theorem 2.4 ([Fri03]). Denote by S(κ) [resp.Sr(κ)] the collection of sets S ∈ L
such that S ⊆ (Sνω)L is stationary in L and in a cardinal- [and real-] preserving
extension, ν \ S contains a club.

Then, if κ is an uncountable regular cardinal in L and (κ+ = ν)L, then

0# L−→ S(κ)

and
0# L−→ Sr(κ).

2.3 Homogeneous Model Theory

2.3.1 Introduction and Motivation for Homogeneous Model Theory

Homogeneous Model Theory (HMT), introduced in [She70] as “finite di-
agrams stable in power”, is an approach to the model theoretic classification of
classes of non-elementary structures (i.e. structures not axiomatizable using a
first-order theory). The motivation behind the development of this approach,
as explained in [HS01, GL02], was the aim to classify the class of models of an
Lγ+ω sentence ψ, with 4Lγ+ω as the substructure relation. We wish this class of
models to be “well behaved” and so add the requirement that the class satisfies
the amalgamation property. It was proved in [She70] that it is equivalent to
consider the class of elementary submodels of a homogeneous monster model
ç.

Thus, in practice the contrast to elementary (first-order) model theory where
one assumes that all considerations take place within a large saturated monster
model, is that we take away the assumption that the monster is saturated, and
instead only insist that it be homogeneous. However, in the HMT context, a
major difficulty arises because the compactness theorem fails. In return for this
concession, we do gain a widening of the possible structures under consideration
as opposed to elementary model theory. For example, the class of existentially
closed models of an inductive theory can be studied within the framework of
homogeneous model theory. In fact, for some γ big enough the class of submod-
els of a homogeneous model can be axiomatized in some theory T ∗ ⊂ Lγ+ω.
(Specifically, where γ > |D(Th(ç)) \ D|, where D is the finite diagram. For
more specifics, see [She70, GL02].)
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2.3.2 Types and Homogeneous Monsters

We assume we work within very large homogeneous model which can serve as a
monster model. We will then be interested in the class of elementary submodels
of this monster.

We work with ç-consistent types:

Definition 2.5 ([HS01]). Let A ⊆ç, and let p be a (first-order) type over A.
We say that p is ç-consistent if it is realized in ç.

We write tp
ç

(a/A) to indicate the ç-consistent type of a over A. Simi-
larly, we take Sm

ç
(A) = {tp

ç
(a/A) : a ∈ ç, length(a) = m}, and S

ç
(A) =⋃

m<ω Sm
ç

(A).

Definition 2.6. A homogeneous monster model ç is said to be stable in λ if
for every B ⊂ dom(ç) of cardinality at most λ, and for every n < ω, we have
|Sn

ç
(B)| 6 λ.
The monster model ç is stable if it is stable in some λ.
The monster model ç is unstable if it is not stable.
We denote by λ(ç) the least λ in which ç is stable, if it exists [HS00].

Denote by λr(ç) the first regular cardinal > λ(ç).

2.3.3 Indiscernibles and Strong splitting independence

A standard notion from model theory follows. We include this definition to
make the terminology clear, as the set-theoretic usage is sometimes at odds to
accepted usage among model-theorists.

Definition 2.7. An (indexed) set of tuples {āi : i < α} is called an n-
indiscernible sequence over A , for n < ω, if

tp(ā0, . . . , ān−1/A) = tp(āi0 , . . . , āin−1/A),

for every i0 < · · · < in−1 < α. The set of tuples {āi : i < α} is an indiscernible
sequence over A if it is an n-indiscernible sequence over A for every n < ω. It
is said to be an indiscernible set if the ordering induced by the indices does
not matter.

Definition 2.8 ([She90] III, p. 85, Def. 1.2). A type p ∈ Sn(A) splits strongly
over B ⊆ A if there exists {āi : i < ω} an indiscernible sequence over B and a
formula φ such that φ(x̄, ā0),¬φ(x̄, ā1) ∈ p.

The following definitions are very similar to the definitions of independence
and κ(T ) in the first-order context. However, here we use strong splitting instead
of forking in the definitions. In the first order context, the definitions using
forking and the definition as stated here are equivalent. In the HMT context,
forking is ill-defined, so we take the strong splitting definition. Consequently,
we lose some nice properties, such as transitivity of the independence relation.

Definition 2.9 ([HS00], p. 2). We define κ(ç) to be the least infinite cardinal
such that there are no a, bi, and ci, i < κ(ç), such that

(i) for all i < κ(ç), there is an infinite indiscernible set Ii over
⋃
j<i(bj ∪ cj)

such that bi, ci ∈ Ii,
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(ii) for all i < κ(ç), there is φi(x, y) such that |= φi(a, bi) ∧ ¬φi(a, ci).

Note that κ(ç) 6 λ(ç) by Corollary 1.3 of [HS00].

Definition 2.10 ([HS00], p. 17, remarks before Lemma 5.1). We say that a
monster model is superstable if κ(ç) = ℵ0. We will call a monster model
strictly stable if it is stable, but not superstable.

Now we can define the notion of independence that we use in the HMT
context.

Definition 2.11 ([HS00], Def. 3.1(i)). We write a |̂
A
B if there is C ⊆ A,

|C| < κ(ç), such that for allD ⊇ A∪B there is b which satisfies tp
ç

(b/A ∪B) =
tp

ç
(a/A ∪B) and tp

ç
(b/D) does not split strongly over C. We write C |̂

A
B

if for all a ∈ C, a |̂
A
B.

2.3.4 Primary Model Constructions

Most of the following definitions are given only in very general terms that allow
one to apply the notions to a very wide range of contexts. We give here these
definitions specifically in the way we need them in our context.

Definition 2.12. For the following, ν is a cardinal.

• We say that tp
ç

(a/A) is Fç

ν -isolated over B if there is B ⊆ A, |B| < ν,
such that for all b, tp

ç
(b/B) = tp

ç
(a/B) implies tp

ç
(b/A) = tp

ç
(a/A).

([HS00], Def. 5.2)

• We say that an (elementary sub-)model A (of ç) is Fç

ν -saturated if for
all A ⊆ A , |A| < ν, and a, there is b ∈ A such that tp

ç
(b/A) = tp

ç
(a/A).

([HS00], Def. 1.8(i))

• An Fç

ν -construction is a triple

A = 〈A, {āi : i < α}, 〈Bi : i < α〉〉,

such that tp
ç

(āi/
⋃
{āj : j < i} ∪A) is Fç

ν -isolated over Bi. ([She90] IV,
p. 155, Def. 1.2(1))

• We say that C0 is Fç

ν -constructible over A0 if there is some Fç

ν -con-
struction

A = 〈A0, {āi : i < α}, 〈Bi : i < α〉〉

such that
C0 =

⋃
{āi : i < α} ∪A0.

([She90] IV, p. 156, Def. 1.3)

• If C is Fç

ν -constructible over A and C is Fç

ν -saturated then we say that
C is Fç

ν -primary over A. ([She90] IV, p. 156, Def. 1.4(1))

• We say that C is Fç

ν -primitive over A if A ⊆ C, and for every Fç

ν -
saturated C ′ such that A ⊆ C ′, there is an elementary mapping f from C
into C ′, where f �A is the identity. ([She90] IV, p. 156, Def. 1.4(2))
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• We say that C is Fç

ν -prime over A if it is Fç

ν -primitive over A and Fç

ν -
saturated.

• We say A is Fç

ν -atomic over B if B ⊆ A and for every ā ∈ A, tp
ç

(ā/B)
is Fç

ν -isolated. ([She90] IV, p. 157, Def. 1.5 )

Remark 2.13. On the surface, the isolation notion Fç

ν above is quite similar
to the isolation notion Fpν of IV Definition 2.6 (p. 168) of [She90], an isolation
notion that does not satisfy certain axioms key in constructions.

However, as was noted in the last paragraph of the introduction to [HS01],
under the assumption that ç is stable, one can easily show that the isolation
notion Fç

ν , for ν > λr(ç) reduces to a notion closely resembling the much
better-behaved notion Fsν , a definition of which can be found in [She90] IV Def-
initions 2.1.1.ii and 2.1.2.

Definition 2.14 ([HS01] Def. 0.1). A model A is said to be locally Fç

ν -
saturated if for all finite sets A ⊂ A there is a Fç

ν -saturated model B such
that A ⊂ B ⊂ A .

3 The Strictly Stable Case

Theorem 3.1. Assume 0# exists.
Suppose L ∈ L is a signature such that (|L| 6 ω)L. Let ç ∈ L be a strictly

stable (stable, but not superstable) homogeneous monster model in similarity
type L such that (|ç| = µ)L, for µ be a sufficiently large.

Let π be such that π = cf(π) > λr(ç). Let carpPIPç

π be the collection of
pairs (A ,B) ∈ L of locally Fç

λr(ç)-saturated elementary substructures ofç with
universe π such that there is a cardinal- and P(λr(ç))-preserving extension of
L in which A ∼= B.

Then, carpPIPç

π is equiconstructible with 0#.

We will show that for each stationary set S ⊆ Sπω , one can find two models
A ,B ∈ L of size π such that in any CAP-extension of L, A ∼= B iff π \ S
contains a club set. We do this by constructing two trees of small height J0, J1,
differing from one another only in that one incorporates S while the other does
not. We will then perform a primary model constructions along these trees.
We show then that these models are not isomorphic in the ground model, but
become isomorphic in an suitable extension only if S is no longer stationary in
that extension.

3.1 Defining the trees and other orderings

We define two trees I0 and I1, which will be used to define two trees J0 and
J1. The trees Ii, Ji, i = 0, 1 all belong to a certain general family of trees Kω

tr,
defined below. Note that the trees we define here are precisely the trees that
were used for the Ehrenfeucht-Mostowski constructions in the first order strictly
stable case as analyzed in [FHR03] and papers cited there.

As opposed to the first-order case, non-structure results for strictly sta-
ble theories have only been shown for weakly Fç

λr(ç)-saturated models and
Ehrenfeucht-Mostowski constructions yield models that are not sufficiently sat-
urated, we will instead use the technique of primary model constructions. We
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cannot use Ehrehnfeucht-Mostowski constructions in this case because we would
need to find tree indiscernibles in the model, and to do so we would need large
cardinals that are not available to us in L. Because we need this different tech-
nique, we need to further define Ki = P<ω(Ji), the set of all finite subsets of
Ji, i = 0, 1, as well as an ordering on the Ki. We will then carry out primary
model constructions using sets indexed by the Ki.

We define first a general family of trees:

Definition 3.2. Let θ be a linear order, and let 6ωθ be the set of all suborders of
θ of length at most ω. We let Kω

tr(θ) be the class of models that are isomorphic
to a model of the form

I = (I,l,DOMα, <lex,MaxInSg)α6ω,

where

1. I ⊆ 6ωθ and is closed under initial segments;

2. l is the initial segment relation;

3. DOMα = {η ∈ I : dom η = α};

4. <lex denotes the lexicographic ordering on I;

5. MaxInSg(ζ, η) is the maximal common initial segment of ζ and η.

Trees in the class Kω
tr(θ) are called ordered trees in the literature. We

define
Kω
tr =

⋃
{Kω

tr(θ) : θ is a linear order}.

3.1.1 The first generation of trees

We fix some notation.

• Let (λ = λr(ç))L. Because we have assumed that ç is strictly stable,
λ > ℵ1.

• Let π > λ+ > ℵ2 be an uncountable regular cardinal such that πω = π.

• Let S ⊆ (Sπω)L be a stationary set in L;

• Let S̄ = 〈ηα : α ∈ S〉, where each ηα is an increasing cofinal sequence in α
of order type ω (i.e., a π-club guessing sequence). We are guaranteed the
existence of this club guessing sequence because π > ℵ2.

We define our first pair of trees.

Definition 3.3.

• Let
I0 = I(π, S̄)

be an ordered tree in Kω
tr(π), with cardinality |I0| = π, having universe
<ωπ ∪ {ηα : ηα ∈ S̄} ⊂ 6ωπ,

where the relations are as always on ordered trees.

• Let
I1 = I(π, 〈〉) = <ωπ.

The tree I1 is also in Kω
tr(π), and |I1| = π.
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3.1.2 The second generation of trees

Now, we define the domains of our next generation of trees. This construction
is due to Shelah [She87].

Let

• LEX(<ωπ) be a linear order with universe <ωπ, ordered lexicographically.

• OTπ(<ωπ) be a linear (well) order with universe <ωπ, ordered with order
type π.

• θ = OTπ(<ωπ) ·LEX(<ωπ) be the product of the linear orders OTπ(<ωπ)
and LEX(<ωπ) whose universe is OTπ(<ωπ)× LEX(<ωπ).

Let
Ī0 = 〈I0 ∩ 6ωα : α < π〉,

Ī1 = 〈I1 ∩ 6ωα : α < π〉 = 〈<ωπ ∩ 6ωα : α < π〉 = 〈<ωα : α < π〉
be π-representations of I0 and I1, respectively.

Lemma 3.4 ([HHR04] Lemma 7.24 (or [HT91] Lemma 8.17)). Suppose π is a
cardinal and LEX(<ωπ) is as above. Then there is E ⊆ LEX(<ωπ) of cardinality
π such that for any a, b ∈ E there is an automorphism ga,b of LEX(<ωπ) which
maps a to b.

Let E ⊆ LEX(<ωπ) be as given by Lemma 3.4. Fix c ∈ E. Let g be a
bijection g : {R : R ∈ Ī0 ∪ Ī1} −→ E \ {c}.
Definition 3.5. Let J0 = J(c, g, Ī0, Ī1) have a universe consisting of functions
η ∈ 6ωθ, such that one of the following holds

1. η ∈ <ωθ (in other terms, η ∈ DOMn for some n ∈ ω; i.e. η is of finite
length);

2. There is s ∈ I0 such that dom(s) = ω, and for all n < ω,

η(n) = 〈s �(n+1), c〉;

3. there are m < ω, R ∈ Ī0 ∪ Ī1, and s ∈ R with dom(s) = ω such that for
all finite n > m, η(n) = 〈s �(n+1), g(R)〉.

Let J1 = J(c, g, Ī1, Ī0) be defined analogously. Note that it is almost the
same as the above definition, but with the second possible condition omitted.

The trees J0 and J1 are isomorphic to ordered trees in Kω
tr(θ), thus we

assume that J0, J1 ∈ Kω
tr(θ).

Lemma 8.20 of [HT91] establishes that J0 and J1 are L∞π-equivalent.

3.1.3 The third generation: a quasi-order

At this point in the construction, we can lose the <lex ordering on Ji, since
we do not need it for the primary model construction that follows. Indeed, we
could have used a different construction in the second generation that did not
feature <lex. However, we chose to take advantage of the existing construction
from [She87] to save some effort.

Let Ki = P<ω(Ji) be the set of all finite subsets of Ji, i = 0, 1, respectively.
We define relations as in [HS98]. Let u, v ∈ Ki. We define the “minimum”

set of initials MinSetIn(u, v) to be the largest set X such that:
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1. X ⊆ {MaxInSg(ζ, η) : ζ ∈ u, η ∈ v};

2. if ηi, ηj ∈ X and ηi is an initial segment of ηj , then ηi = ηj .

Note that

MinSetIn(u, u) = {ζ ∈ u : ¬∃η ∈ u (ζ is a proper initial segment of η)}.

The elements of Ki are ordered by <K : u <K v iff for every ζ ∈ u there is
η ∈ v such that ζ is an initial segment of η. In other terms,

u ≤K v iff MinSetIn(u, v) = MinSetIn(u, u).

Note that (Ki, <
K) cannot have infinite descending chains.

Definition 3.6. We call s ∈ Ki semi-good if s is an antichain with regard to
the l relation in Ji.

Denote by s̄ the downwards closure of s. We say that r ∈ Ki is good if it
is downwards closed and r ⊂ s̄, where s is semi-good. We denote by G(Ki) the
collection of good elements of Ki.

3.2 Building the models: putting fat on the trees

We will base a primary model construction based on the trees Ji, using the
quasi-order Ki.

3.2.1 Cardinal Assumptions

Recall that we assume in this section that we work within ç, a strictly stable
homogeneous monster model of cardinality ||ç|| = µ. We let λ(ç) be the
first cardinal in which ç is stable, and we let λ = λr(ç) be the first regular
cardinal > λ(ç). By our assumption that ç is strictly stable, κ(ç) 6= ω (see
3.7 below). Thus, ℵ1 6 κ(ç) 6 λ(ç) 6 λ. Further, let π be a regular cardinal
such that πω = π and λ < π < µ. Thus π > ℵ2. This π is the size of the models
that we will be building, and is the cardinal upon which our trees have been
built.

We proceed with the construction similarly to [HS98].

3.2.2 An initial ω-sequence of models

We restate the following lemma, which provides the seed for our construction:

Lemma 3.7 (Lemma 5.1 [HS00]). The following are equivalent:

1. ç is not superstable.

2. κ(ç) 6= ω.

3. There is an increasing sequence An, n < ω of Fç

λ(ç)-saturated models and
an element a such that for all n < ω, a -̂

An
An+1.

Remark 3.8. The sequence An, n < ω in Lemma 3.7 can be chosen to consist
of models of size λ.
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Proof. Let An, n < ω be the sequence of models given by Lemma 3.7. It is easy
to find such models that are quite large.

Each An is Fç

λ -saturated, and hence strongly Fç

κ(ç)-saturated by Lemma
1.9(iv) of [HS00]. Thus, by the monotonicity given by Lemmas 1.2(vi) and 1.13,
and the proof of Lemma 3.2(iii) of that same paper, there exist Bn ⊂ An an
increasing sequence of sets of size < κ(ç) such that

a |̂
Bn

An.

We also have that a -̂
Bi

Ai+1. By the finite character of independence in our
setting (Corollary 3.5(i) of [HS00]), there exist finite bn+1 ∈ An+1 that witness
a -̂

Bn
An+1 such that

a -̂
Bn

bn+1.

Choose Fç

λ -saturated models Cn of size λ so that Bn ⊂ Cn ⊂ An and
bn+1 ∈ Cn+1. We can do this by Theorem 3.14 of [HS00].

We claim that (Cn)n<ω satisfy the requirements of Lemma 3.7: Assume
the contrary, that a |̂

Cn
Cn+1. Since a |̂

Bn
An, a |̂

Bn
Cn by monotonicity.

By transitivity and monotonicity, a |̂
Bn

Cn+1. Finally, monotonicity gives us
a |̂

Bn
bn+1, and hence a contradiction. �3.8

Construction Element. Thus, fix (Aj)j6ω, a sequence of Fç

λ(ç)-saturated
models of size λ, and an element a with the properties as in Lemma 3.7.

Construction Element. Let Aω be a Fç

λr(ç)-primary model over a∪
⋃
i<ω Ai,

the existence of which is guaranteed by Theorem 5.3 of [HS00] (proof is in
[She70]).

3.2.3 The Construction

Construction Element. For all η ∈ π6ω, using analogous reasoning to that
found in Section 1 of [Hyt97] (discussion of which begins after Theorem 1.15 and
continues through the proof of Lemma 1.17 of that paper), we define models Aη

such that

• for all η ∈ 6ωπ, there is an automorphism fη of ç such that

fη(Alength(η)) = Aη;

• if η is an initial segment of ζ, then

fζ �Alength(η)= fη �Alength(η) ;

• if η ∈ <ωπ, α ∈ π, and X is the set of those η ∈ 6ωπ such that η ^ (α) is
an initial segment of ζ, then⋃

ζ∈X

Aζ |̂
Aη

⋃
ζ∈(6ωπ\X)

Aζ ;
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• for all η ∈ ωπ, we let aη = fη(a).

We recall a definition which will allow us to carry out the construction in an
orderly and controlled manner.

Definition 3.9 (Definition 3 of [HS98]). Assume J ⊆ 6ωπ is closed under initial
segments and K = P<ω(J). Let Σ = {Au : u ∈ K} be an indexed family of
subsets of ç of cardinality < µ. We say that Σ is strongly independent if

1. for all u, v ∈ K, u ≤K v → Au ⊆ Av;

2. if u, ui ∈ I, i < n ∈ ω, and B ⊆
⋃
i<nAui has cardinality< π, then there is

an automorphism f = fΣ,B
(u,u0,...,un−1) of ç such that f �(B∩Au)= idB∩Au ,

and f(B ∩Aui) ⊆ AMinSetIn(u,ui).

Construction Element. Define

Aiu =
⋃
η∈u

Aη,

for u ∈ Ki.

We can now apply Lemma 6 of [HS98] to find that {Aiu : u ∈ Ki} is strongly
independent.

Construction Element. We apply Lemma 4 of [HS98] to {Aiu : u ∈ Ki}, and
so find models A i

u 4ç, u ∈ Ki which satisfy the following properties:

1. For all u, v ∈ Ki, u ≤K v implies A i
u ⊆ A i

v ;

2. for all u ∈ Ki, A i
u is Fç

λr(ç)-primary over Aiu. This implies that
⋃
u∈Ki A i

u

is a model.

3. if v ≤ u, then A i
u is Fç

λr(ç)-atomic over
⋃
u∈Ki A

i
u, and Fç

λr(ç)-primary
over A i

v ∪Aiu.

These models A i
u arise via a Fç

λr(ç)-construction, with points aγ , and sets Bγ ,
γ < α chosen appropriately. See proof of Lemma 4, [HS98] for full details.

In addition, note that by the proof of [HS98] Lemma 4 (Claim), the families
of models {A i

u : u ∈ Ki}, where i = 0 or i = 1 are strongly independent.

Construction Element. Denote by

A Ji =
⋃
u∈Ki

A i
u

the resulting constructed models given by Lemma 4 of [HS98].

3.3 Non-isomorphism when symmetric difference of
S-invariants is stationary

Lemma 4 of [HS98] guarantees that A J0 and A J1 have certain properties that
we will need to show non-isomorphism.
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Lemma 3.10 (Lemma 4 of [HS98]). Assume Σ = {Au : u ∈ K} is strongly
independent with notation as in the definition above. Then there are sets A ⊂
ç such that

1. for all u, v ∈ I, u ≤K v → Au ⊆ Av;

2. for all u ∈ I, Au is Fç

λr(ç)-primary over Au (and so
⋃
u∈I Au is a model),

3. if v ≤K u, then Au is Fç

λ -atomic over
⋃
u∈I Au and Fç

λr(ç)-primary over
Av ∪Au,

4. if J ′ ⊆ J is closed under initial segments, and u ∈ P<ω(J ′), then the
union

⋃
v∈P<ω(J′) Av is Fç

λr(ç)-constructible over Au ∪
⋃
v∈P<ω(J′)Av.

Furthermore, we have much information about the structure of the trees
J0, J1.

Definition 3.11. Denote by INSπ be the ideal of non-stationary sets on π.
For J ⊆ π6ω, let Jα = J ∩ α6ω.
For K = P6ω(J), let Kα = P6ω(Jα).
Define the S-invariant of J to be:

S(J̄) = {δ : ∃η ∈ Jδ (η /∈
⋃
α<δ

Jα)} modulo INSπ .

Lemma 3.12. Let A J and A J′ be models constructed as above for trees J, J ′ ⊆
π6ω. Assume that S(J)4S(J ′) = (S(J) \S(J ′))∪ (S(J ′) \S(J)) is stationary.
Then A J 6∼= A J′ .

Proof. We follow Lemma 8 of [HS98].
Assume for a contradiction that f : A J −→ A J′ is an isomorphism.
Let J̄ = (Jα)α<π, J̄ ′ = (J ′α)α<π. Let K = P6ω(J), K ′ = P6ω(J ′), and

let Kα = P6ω(Jα), K ′α = P6ω(J ′α).
Let A α

J =
⋃
s∈G(Kα) As, where G(Kα) is the collection of good elements of

Kα, as defined in Definition 3.6.
We can find α and αi, i < ω such that

• η = (αi)i<ω is strictly increasing for all i < ω,

• α =
⋃
i<ω αi ∈ S(J)4 S(J ′),

•
f �A α

J
: A α

J

∼=−→ A α
J′

and
f �A αi

J
: A αi

J

∼=−→ A αi
J′ ,∀i < ω

are isomorphisms.

Without loss of generality, we can assume that α ∈ S(J) \ S(J ′) and thus that
η ∈ J \ J ′.
Claim 3.12.1.

aη -̂
A
αi
J

A
αi+1
J
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Recall from the construction that

aη -̂
Aη�i

Aη�i+1 .

Since Aη�i ⊂ A αi
J and Aη�i+1 ⊂ A

αi+1
J , and Aη�i+1 6⊂ A αi

J , by monotonicity
(Lemma 3.2 (i), [HS00]), we have

aη -̂
Aη�i

Aη�i+1 ⇒ aη -̂
Aη�i

A
αi+1
J .

Claim (3.12.1*). Thus, to prove Claim 3.12.1, it is enough to show that

aη -̂
A
αi
J

Aη�i+1 .

Assume for a contradiction that aη |̂ A
αi
J

Aη�i+1 .

Claim 3.12.2.
aη |̂

A
αi
J

Aη�i+1 ⇒ A αi
J -̂

Aη�i

Aη�i+1 .

By assumption, aη |̂ A
αi
J

Aη�i+1 . This implies that Aη�i+1 |̂ A
αi
J

aη. We

get this symmetry by using monotonicity to find that aη |̂ A
αi
J

b̄ for any finite

b̄ ∈ Aη�i+1 . Then, since A αi
J is Fç

λ(ç)-saturated by construction ([HS98]), and
hence strongly Fç

κ(ç)-saturated, by Lemma 3.6 of [HS00], b̄ |̂
A
αi
J

aη. Since this

is true for all b̄ ∈ Aη�i+1 , we get

Aη�i+1 |̂
A
αi
J

aη.

Now, assume for a contradiction that A αi
J |̂

Aη�i

Aη�i+1 . By a similar sym-

metry argument, Aη�i+1 |̂ Aη�i

A αi
J .

Thus, we have

Aη�i+1 |̂
A
αi
J

aη and Aη�i+1 |̂
Aη�i

A αi
J .

In addition, by [HS98] Lemma 3.2 (iii), we have aη |̂ A
αi
J

A αi
J . We can thus

apply [HS98] Lemma 3.8 (iii) to find that

Aη�i+1 |̂
Aη�i

aη ∪A αi
J .

By monotonicity and symmetry, we get aη |̂ Aη�i

Aη�i+1 , a contradiction.
VClaim 3.12.2

Thus, with our assumptions so far, we have Aη�i+1 -̂ Aη�i

A αi
J . We now

show that this dependence causes a contradiction.
Since Aη�i is sufficiently saturated, by [HS98] Corollary 3.5 (i), there is

c ∈ A αi
J such that

Aη�i+1 -̂
Aη�i

c.



3 The Strictly Stable Case 15

Since A αi
J =

⋃
s∈G(Kαi ) As, there is a good s ∈ Kαi such that c ∈ As.

Now, let r = {η �j : j 6 i+ 1}. Then, r is good and r ∩ Jαi = {η �j : j 6 i}.
Without loss of generality, we can assume that η �i∈ s, since As cannot get
smaller with this assumption.

However, by strong independence (see [HS98]), Ar |̂ Ar∩s
As, which by def-

inition, written otherwise
Aη�i+1 |̂

Aη�i

As.

This gives a contradiction since c ∈ As. VClaim 3.12.1

Thus, there is u ∈ K ′ such that for all i < ω, Au -̂ A
αi
J′

A
αi+1
J′ . However,

since α /∈ S(J ′), this contradicts Lemma 7 of [HS98]. �3.12

Corollary 3.13. Let A J and A J′ be models constructed as above for trees
J, J ′ ⊆ π6ω. Assume that S(J) = S ⊂ Sπω and S(J ′) = ∅, thus S(J)4S(J ′) = S
is stationary. Then A J 6∼= A J′ in any cardinal- and P(λr(ç))-preserving
extension of the universe where the symmetric difference S(J)4 S(J ′) remains
stationary.

Notice that the proof of Lemma 3.12 is in ZFC. In particular, the notion of in-
dependence is absolute for models where no small (of size < λr(ç)) subsets are
added. Thus, two models AJ and AJ′ which are non-isomorphic in the ground
model remain non-isomorphic in any cardinal- and P(λr(ç))-preserving ex-
tension of the universe where the symmetric difference S(J) 4 S(J ′) remains
stationary.

It is easy to see that S(J0) = S and S(J1) = ∅. Thus, we can apply the
previous lemma to find that in L, AJ0 6∼= AJ1 .

3.4 Isomorphism of the models when S is killed

Theorem 3.14. Assume that in some extension of the set theoretic universe
which preserves cardinals and P(λr(ç)), J0

∼= J1. Then in that extension
AJ0
∼= AJ1 .

Proof. Assume that F : J0 −→ J1 is an isomorphism. We aim to find an
isomorphism between AJ0 and AJ1 .

We proceed by induction on good elements of K0 along the ordering ≤K
by building elementary maps Gu, u ∈ K0. We ensure in this induction that if
ui ≤K uj and uj 6≤K ui then Gui is constructed before Guj .

Base case – isomorphism for the first level of the tree G0: For all
u ∈ K0 = P<ω(J0), let F (u) = {F (η) : η ∈ u}. For η ∈ J0, let G0 �Aη

=
f−1
F (η) ◦ fη, where the fη are as defined on page 11. Thus,

G0 :
⋃
η∈J0

Aη −→
⋃
η∈J1

Aη.

Claim 3.14.1. The function G0, which maps one strongly independent family to
the other, is elementary.

We prove the claim by induction on good elements s ∈ K0 along the ordering
≤. Denote by Gη0 = f−1

F (η) ◦ fη, and by Gs0 =
⋃
ξ∈sG

ξ
0, for s ∈ G(J0).

By construction, Gη0 , η ∈ J0 is elementary.
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Now, assume that Gs0 has been shown to be elementary. We wish to show
that Gs

′

0 for s′ ≥K s is also elementary. Our ordering of G(J0) implies that it
is enough to consider s′ = s ∪ {η} for some η ∈ J0. We thus have two cases:
η ∈ π<ω or η ∈ πω. The arguments for both are similar.

If η ∈ π<ω, denote by η− = η �(length(η)−1). If η ∈ πω is an infinite branch,
then we can then find i < ω such that ∀ξ ∈ s, ξ 6> η �i. Denote by η− = η �i−1).

Since we are working in a homogeneous monster model ç, we can assume
without loss of generality that Gs0 �As= idAs .

In addition, we know from the construction that

tp
ç

(Aη/Aη−) = tp
ç

(Gη0(Aη)/Aη−),

because Gη0 is elementary and Gη0 �Aη
= id. We thus want to show that

tp
ç

(Aη/As) = tp
ç

(Gη0(Aη)/As)

. Since Aη is Fç

λ(ç)-saturated, these types are stationary. Therefore, by defini-
tion of stationarity (Def. 3.3. [HS00]) it is enough to show that

Aη |̂
Aη−

As and Gη0(Aη) |̂
Aη−

As.

However, note that η− ∈ s = f(s), thus we have the independence by construc-
tion, and so the embedding is elementary.

VClaim 3.14.1

Before we continue with the next step of the induction, we give some notation
and reminders. Denote A{η} = Aη. Recall that by the construction, Au =⋃
η∈u Aη for u ∈ Ki, and Au is Fç

λr(ç)-prime over Au.
Ultimately, we aim to build an isomorphism G : A J0 −→ A J1 such that

G �Aη
= idAη

for all η ∈ Ji. Since A Ji =
⋃
u∈Ki A i

u , it is enough to construct
Gu : A 0

u −→ A 1
u such that if t ≤K u, then Gt ⊆ Gu. If we can show that⋃

t≤KuGt is elementary, then using homogeneity of ç, we can find the desired
isomorphism Gu. The full isomorphism will then be G =

⋃
u∈G(Ki)

Gu.
Inductive step: Assume we have shown that for all t � u, Gt are isomor-

phisms. We build an isomorphism Gu : A 0
u −→ A 1

u .
Claim 3.14.2. The function

⋃
t<KuGt is elementary.

We assume for a contradiction that the inductive step fails at some point.
Let u be the ≤K-smallest such that

⋃
t≤KuGt = G∗ is not elementary.

This failure of elementariness is witnessed by some set of finitely many points
a0, . . . , am ∈

⋃
t≤Ku At. Then, in particular, G∗ �{a0,...,am} is not elementary.

Subclaim 3.14.2.1. The points a0, . . . , am can be replaced with tuples āi, i =
0, . . . n which appear all at once at a given step in the construction, that is,
āi ∈ Ati and āi ∩

⋃
t<Kti

Ai = ∅.
Consider a0, . . . , am. For all i 6 m, there is ti <K u such that ai ∈ Ati \⋃

t<Kti At. Let {t0, . . . , tn} be an enumeration of the ti so that ti 6= tj if i 6= j
(i.e., we get rid of repetitions). In addition, we can assume without loss of
generality that tn is maximal in {t0, . . . , tn} with respect to the ordering ≤K .

Define āi = {aj : tj = ti}. Then āi is the desired tuple. such that āi ∈ Ati

and āi ∩
⋃
t<ti

Ai = ∅. VSubclaim 3.14.2.1
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To save ink, we will denote the tuples āi as ai, and now consider the finite
set of tuples {a0, . . . , an}.

We wish to refine this choice of witnesses {a0, . . . , an} to minimize the tn
and the number n. To this end, we devise an ordering on P6ω(Ki):

Definition 3.15. For ti, ui ∈ Ki, we say that {ti : i 6 n} b {ui : i 6 m} iff for
all i 6 n there is j ∈ m such that ti ≤ uj and there is uj such that uj 6≤ ti for
every i 6 n.

We can minimize the choice of witnesses {a0, . . . , an} easily if there are only
finitely many candidates which may be smaller than our initial choice. We
will assume otherwise, and, using Ramsey’s Theorem, come to a contradiction.
Thus, assume for a contradiction, that there are infinitely many choices of wit-
nesses {a0, . . . , an} = {a0

0, . . . , a
0
n0
}, {a1

0, . . . , a
1
n1
}, . . . , {aj0, . . . , ajnj}, . . . from

P<ω(K) for which the associated {t0, . . . , tn} = {t00, . . . , t0n0
}, {t10, . . . , t1n1

},
. . . , {tj0, . . . , tjnj}, . . . , are b than our original choice. These are quasi-ordered
by b.
Subclaim 3.15.0.2. The collection

{t00, . . . , t0n0
}, {t10, . . . , t1n1

}, . . . , {tj0, . . . , tjnj}, . . .

is a quasi-ordering with no b-infinite descending sequences.
For notational simplicity, we will write Xj = {tji : i < nj}, and consider

them with the ordering b.
Assume for a contradiction that there is an infinite descending chain. We

assume, without loss of generality, that this chain is enumerated so that Xj+1 b
Xj .

Let uj ∈ Xj be such that uj 6≤K tj+1
k for every k < nj+1 (by definition of

b, there is at least one such uj ∈ Xj for every j).
Thus, for all j < i < ω, uj 6≤K ui. This is because if i = j + 1, then

this is simply the definition of uj , and otherwise, we can find k < nj+1 such
that ui ≤K tj+1

k . So, if uj ≤K ui, then uj ≤K tj+1
k , a contradiction with the

definition of ui.
Since the uj are finite antichains in Ji, it is easy to see that

⋃
{uj : j < ω}

does not contain infinite decreasing ≤J -chains. By the same argument, there
are also no infinite increasing ≤J -sequences.

By Ramsey’s Theorem, there must thus be an infinite ≤J -antichain. Thus,
we can find t0i , i < n0, and an infinite set X ⊆ ω such that {uj : j ∈ X} is an
≤K-antichain, and uj ≤K t0i for all j ∈ X.

Let T be the tree composed of η ∈ J , such that η < ξ for some ξ ∈ t0i ⊂ J .
We show that since such a tree has no maximal branches, the existence of an
infinite ≤K-antichain is not possible.

Note that for all j < i and k, there is n such that tik ≤K tjn.
Without loss of generality, we can assume that uj = {uji : i < m}. To ensure

this, we may need to make X smaller so that |uj | 6 n0, for all i ∈ X.
By applying the Ramsey Theorem m times, we can assume the one of the

following for all i < m:

1. for all j < k, uki <
K uki ;

2. for all j < k, uji ⊥K uki ;
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3. for all j < k, uji ≥K uki .

Clearly case 1 is not possible. Furthermore, it is not possible for case 3 holds
for all i < m. Thus, let i < m be such that 2 holds. Then {uji : j ∈ X} is an
infinite ≤J -antichain in T , a contradiction.

VSubclaim 3.15.0.2

Assume now that our choice of {a0, . . . , an} and {t0, . . . , tn} is minimal in
<K .

There is C ⊂
⋃
t<tn

At, |C| = λr(ç) such that

tp(an/C) |= tp(an/
⋃
t<tn

At).

Let B = C ∪ {a0, . . . , an−1}.
On the one hand, let H = fB(tn,t0,...,tn−1) be as in Definition 3.9. That is, H

is an automorphism of ç such that H �(B∩Atn )= idB∩Atn
and for i < n,

H(B ∩Ati) ⊆ AMinSetIn(tn,ti).

Then, H(ai) ∈ AMinSetIn(tn,ti). Since MinSetIn(tn, ti) < tn, H(ai) ∈
⋃
t′<tn

At′ .
Since H �C= id, we have

tp(a0, . . . , an−1/C) = tp(H(a0), . . . ,H(an−1)/C)

and
tp(an/C) |= tp(an/C ∪ {H(a0), . . . ,H(an−1)}),

so
tp(an/C) |= tp(an/C ∪ {a0, . . . , an−1}).

On the other hand, consider G∗. Since {a0, . . . , an} is a minimal witness
that G∗ is not elementary, the function G∗ �C∪{a0,...,an−1} must be elementary.

Let G+ be an automorphism of ç such that G+ ◦G∗ �C∪{a0,...,an−1}= id.
Since G∗ �Atn

= Gtn and C ⊆ Atn , G∗ �C∪an is elementary. Thus

tp(G+(G∗(an))/C) = tp(an/C).

However,

tp(G+(G∗(an)), a0, . . . , an−1/C) = tp(G∗(an), G∗(a0), . . . , G∗(an−1)/G∗(C)),

thus

tp(G∗(an), G∗(a0), . . . , G∗(an−1)/∅) |= tp(an, a0, . . . , an−1/∅).

This means that

tp(an/C) 6|= tp(an/C ∪ a0, . . . , an−1),

a contradiction.
VClaim 3.14.2

�3.14

Corollary 3.16. Let A J0 and A J1 be models constructed as above for trees J0

and J1. Assume that in a cardinal-preserving extension of the universe, S(J0)
is not stationary. Then A J0 ∼= A J1 .

Proof. Lemmas 7.15 and 7.31 of [HHR04] demonstrate that in the extension,
J0
∼= J1. We can then apply the previous theorem 3.14. �3.16



3 The Strictly Stable Case 19

3.5 Constructibility with respect to 0#

We now have all the necessary ingredients to prove Theorem 3.1.

Proof. The result is a direct result of Theorem 2.4 and Corollaries 3.13 and
3.16. �3.1
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