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FIXED POINTS AND AMENABILITY

IN NON-POSITIVE CURVATURE

PIERRE-EMMANUEL CAPRACE* AND NICOLAS MONOD‡

Abstract. Consider a proper cocompact CAT(0) space X. We give a complete alge-
braic characterisation of amenable groups of isometries of X. For amenable discrete
subgroups, an even narrower description is derived, implying Q-linearity in the torsion-
free case.

We establish Levi decompositions for stabilisers of points at infinity of X, generalis-
ing the case of linear algebraic groups to Is(X). A geometric counterpart of this sheds
light on the refined bordification of X (à la Karpelevich) and leads to a converse to the
Adams–Ballmann theorem. It is further deduced that unimodular cocompact groups
cannot fix any point at infinity except in the Euclidean factor; this fact is needed for
the study of CAT(0) lattices.

Various fixed point results are derived as illustrations.
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1. Introduction

1.A. Amenable isometry groups. A celebrated theorem by Tits asserts that an arbi-
trary group G ⊆ GL(V ) of linear transformations of a finite-dimensional vector space V
over any field is subjected to the following alternative: either G contains a non-abelian
free subgroup, or G is soluble-by-{locally finite} (see Theorems 1 and 2 in [Tit72]). In
particular a subgroup G ⊆ GL(V ) is amenable if and only if it is soluble-by-{locally
finite}. The importance of that result stimulated since then an active search for larger
classes of groups satisfying a similar alternative. It is in particular a notorious open
problem to obtain a version of the Tits alternative for groups G ⊆ Is(X), where X is a
cocompact proper CAT(0) space, i.e. a non-positively curved proper metric space with
a cocompact isometry group.
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2 P.-E. CAPRACE AND N. MONOD

While considering extensions of the Tits alternative to wider families of groups, it is
natural to split the problem into two sub-questions, namely:

(1) Does every non-amenable subgroup contain a free group?
(2) What is the algebraic structure of amenable subgroups?

Our first goal in this paper is to provide a complete answer to Question (2) for isometry
groups of a cocompact proper CAT(0) space. To this end, we recall that the locally
elliptic radical RadLE of a locally compact group is the largest normal subgroup which
can be written as increasing union of compact groups (see [Pla65]). In case of discrete
groups, locally elliptic is thus a synonym of locally finite.

The following theorem shows that a subgroup is amenable if and only if it has a
specific canonical decomposition into pieces that are either connected soluble or discrete
soluble or locally elliptic, in analogy with Tits’ description of amenable linear groups.

Theorem A. Let X be a proper cocompact CAT(0) space.
A closed subgroup H ⊆ Is(X) is amenable if and only if the following three conditions

hold:

(1) H◦ is soluble-by-compact,
(2) H◦RadLE(H) is open in H,
(3) H/(H◦RadLE(H)) is virtually soluble.

Thus a closed subgroup H ⊆ Is(X) is amenable if and only if it is {connected soluble}-
by-{locally elliptic}-by-{discrete virtually soluble}.

In the same way as the Tits alternative can be used to find obstructions to linearity,
Theorem A implies that many groups cannot appear as closed subgroups of a cocompact
group of isometries of a proper CAT(0) spaces. Since amenability passes to the closure,
we still get restrictions on arbitrary amenable subgroups. As an extreme example, we
recall that there is an active search for (infinite) finitely generated simple amenable
groups; non-positively curved spaces will not be the natural habitat where to hunt for
them:

Corollary B. Let Γ be an infinite finitely generated amenable group. Assume that the
only virtually abelian quotient of Γ is the trivial one (e.g. Γ is simple).

Then there is no non-trivial isometric Γ-action whatsoever on any proper cocompact
CAT(0) space.

1.B. Discrete amenable subgroups. Given a discrete group Γ acting properly and
cocompactly on X, all the amenable subgroups of Γ are virtually abelian and stabilise a
flat in X: this was proved by Adams–Ballmann (Corollary B in [AB98]) and generalises
the Solvable Subgroup Theorem (Theorem II.7.8 in [BH99]).

We emphasize that Theorem A does not suppose the existence of any discrete co-
compact group of isometries: only the (possibly indiscrete) full isometry group Is(X) is
assumed cocompact. Although discrete amenable subgroups of Is(X) need not be virtu-
ally abelian (for instance the Heisenberg group over Z is a discrete subgroup of SL3(R)),
Theorem A states that they must be {locally finite}-by-{virtually soluble}. We remark
that the virtually soluble quotient need not be finitely generated in general (this applies
a fortiori to the discrete quotient of H in Theorem A). Indeed, a CAT(0) lattice such
as SLn(Z[1/p]) contains the infinitely generated abelian group Z[1/p] as a subgroup.



FIXED POINTS AND AMENABLILITY 3

Notice however that every finitely generated subgroup of Z[1/p] is cyclic. This reflects
a general property of Q-linear soluble groups, all of which have finite Prüfer rank.
Recall that this rank is the smallest integer r such that every finitely generated subgroup
can be generated by at most r elements. Our next theorem establishes such a finiteness
result in the generality of all proper cocompact CAT(0) spaces.

Theorem C. Let X be a proper cocompact CAT(0) space. Then there is a constant
r = r(X) such that the following holds.

For every discrete amenable subgroup Γ < Is(X), the quotient Γ/RadLE(Γ) is virtually
{torsion-free soluble of Prüfer rank ≤ r}.

Remark that for each prime p, the lamplighter group (Z/p) o Z can be realised as a
discrete group of isometries of a cocompact CAT(0) space, since it embeds in the CAT(0)
lattice SLn(Fp[t, t

−1]). Theorem C implies that, on the other hand, the wreath product
Z o Z cannot.

Since torsion-free soluble groups of finite Prüfer rank are known to be linear over Q
by a theorem of Wehrfritz [Weh73, pp.25–26], Theorem C has the following consequence.

Corollary D. Let X be a proper cocompact CAT(0) space.
Then any torsion-free discrete amenable subgroup Γ < Is(X) is Q-linear. �
By a theorem of Sh. Rosset [Ros76], the kernel of any homomorphism of a finitely

generated group of subexponential growth to a virtually soluble group is itself finitely
generated. As pointed out to us by Ami Eisenmann, the latter fact combined with
Theorem C yields the following, since a virtually soluble group of subexponential growth
is virtually nilpotent [Mil68].

Corollary E. Let X be a proper cocompact CAT(0) space.
Then every finitely generated discrete subgroup Γ < Is(X) of subexponential growth is

virtually nilpotent.
Thus Is(X) does not admit discrete subgroups of intermediate growth. �
Of course certain groups of intermediate growth can be embedded non-discretely into

Is(X), for instance if they are residually finite like Grigorchuk’s group.

1.C. Refining spaces. A fundamental tool for the study of amenable subgroups of
isometries of a proper CAT(0) space X is the Adams–Ballmann theorem [AB98] which
states that such a group preserves a flat or fixes a point at infinity. The first case of this
alternative is of course highly satisfactory since the isometries of Euclidean space form
a very elementary Lie group, but the case of a fixed point at infinity seems at first sight
to be of little help for the elucidation of the group.

The way forward here is to use the transverse space Xξ of a point ξ ∈ ∂X together
with the canonical action of the stabiliser of ξ on Xξ, see Section 3.D below (in the
classical case of symmetric spaces, this construction goes back at least to the Karpelevich
compactification; in general, see also [Lee00], [Cap09]). This opens the door to iterations,
considering refining sequences (ξ1, . . . , ξk), which are defined by ξ1 ∈ ∂X and then
ξi+1 ∈ ∂Xξ1,...,ξi . A refined point, flat, etc. refers to the corresponding object in some
Xξ1,...,ξk . With this terminology at hand, we can state a converse to the Adams–Ballmann
theorem, whose proof relies on iterative constructions of liftings for transverse spaces with
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(generally non-continuous) associated homomorphisms, and on an appropriate version
of the Kazhdan–Margulis theorem.

Theorem F. Let X be a proper cocompact CAT(0) space.
Then the stabiliser of every refined flat of X is amenable (and closed).

This is a converse because both theorems combine to give the following geometric
characterisation of all amenable subgroups, thus complementing the algebraic charac-
terisation of Theorem A:

Corollary G. Let X be a proper cocompact CAT(0) space.
Then a closed subgroup of Is(X) is amenable if and only if it preserves a refined flat.

The ‘only if’ direction follows from a simple iteration of the Adams–Ballmann the-
orem [AB98]. This iteration process terminates after finitely many steps because the
maximal index k of a refining sequence (ξ1, . . . , ξk) in X is bounded when X is cocom-
pact. This bound, which we call the depth of X, turns out to coincide with the flat
rank (see Corollary 3.20 below).

There are groups for which every isometric action on a proper CAT(0) space must
preserve a refined flat without requesting the amenability of the group. It is easy to
produce such examples in a way that runs afoul of the combination of Corollary G and
Theorem A, thus giving groups that cannot act at all. Here is an example:

Corollary H. Richard Thompson’s simple groups T and V do not admit any non-trivial
isometric action whatsoever on any proper cocompact CAT(0) space.

Recall that Thompson’s group T can be viewed as the group of all orientation pre-
serving piecewise affine transformations of R/Z which have dyadic breaking points and
whose slopes are integral powers of two. Alternatively, it admits the following finite
presentation, see [CFP96, §5].

T =
〈
a, b, c

∣∣ [ab−1, a−1ba], [ab−1, a−2ba2], c−1ba−1cb,

(a−1cba−1ba)−1ba−2cb2, a−1c−1(a−1cb)2, c3
〉

This group is known to have a very nice (proper) isometric action on a locally finite
CAT(0) cube complex [Far05], but the latter space is not cocompact – indeed not finite-
dimensional. A similar construction is available for V .

At the end of Section 5.B, we shall give various examples of groups, amenable or
not, some of them torsion-free, for which no isometric action on any proper cocompact
CAT(0) space can be faithful. Recall that every countable group embeds in a 2-generated
simple group (see [Hal74] and [Sch76]). Moreover, if the countable group in question
is torsion-free, then the simple group can also be chosen torsion-free, as follows from
Theorem A in [Mei85] (see also Remark 2 on p. 392 in loc.cit.). Applying this embedding
theorem to one of the torsion-free groups without faithful action on a proper cocompact
CAT(0) space constructed in Section 5.B below, we obtain the following.

Corollary I. There is an infinite 2-generated torsion-free simple group that does not
admit any non-trivial isometric action on any proper cocompact CAT(0) space. �
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Notice that the assumption that a space be cocompact, which does not impose any
restriction on the action of the groups that we consider, does not either imply any sort
of local regularity nor of finite dimensionality. For very explicit examples of proper
cocompact minimal CAT(−1) spaces that are infinite-dimensional, see [MP12].

1.D. Fixed points and Levi decompositions. In the quest for understanding cocom-
pact CAT(0) spaces and their cocompact isometry groups, we have proposed in [CM09b]
some structural results under the assumption that no point at infinity be fixed by the
entire cocompact group. Notice however that the results stated above do not request
that hypothesis; their proofs therefore require to study the remaining case, i.e when
some point at infinity has a stabiliser acting cocompactly on the space. We shall prove
that such a stabiliser admits a Levi decomposition generalising the situation of parabolic
subgroups of semi-simple algebraic groups; moreover, the corresponding “Levi factor”
will again be represented as a cocompact isometry group of a suitable CAT(0) subspace.

Let thus X be a proper CAT(0) space, G < Is(X) a closed subgroup and ξ ∈ ∂X. We
define

Gu
ξ :=

{
g ∈ G : lim

t→∞
d
(
g · r(t), r(t)

)
= 0 ∀ r with r(∞) = ξ

}

(where r : R→ X are geodesic rays). This is a closed normal subgroup of Gξ. We recall
that Opp(ξ) is the set of points ξ′ ∈ ∂X that are visually opposite ξ, i.e. such that there
is a bi-infinite geodesic line in X with extremities ξ and ξ′. The union of all such lines
is denoted by P (ξ, ξ′); it is a closed convex subspace of X with a non-trivial Euclidean
factor. If the stabiliser Is(X)ξ acts cocompactly, then the set Opp(ξ) is non-empty.

Theorem J. Assume that Gξ acts cocompactly on X. Then for each ξ′ ∈ Opp(ξ) we
have a decomposition

Gξ = Gξ,ξ′ ·Gu
ξ

which is almost semi-direct in the sense that Gξ,ξ′ ∩ Gu
ξ is compact. In particular, Gu

ξ

acts transitively on Opp(ξ).

This algebraic Levi decomposition comes with the geometric counterpart below, which
generalises the fact that, for semi-simple Lie groups, the Levi factor acts on a totally
geodesic copy of its symmetric space embedded in the ambient space by the Mostow–
Karpelevich theorem.

Proposition K. In the setting of Theorem J, the double stabiliser Gξ,ξ′ acts cocompactly
on P (ξ, ξ′) and there is a canonical isometry P (ξ, ξ′) ∼= R×Xξ so that Gξ,ξ′ ∩Ker(βξ)
acts cocompactly on Xξ.

(Herein βξ : Gξ → R denotes the Busemann character.)

As we shall see in Section 4, the kernel of the Gξ-action on Xξ is amenable. At this
point, the following scheme emerges for a completely general cocompact group G of
isometries of a proper CAT(0) space X:

If there is no global fixed point at infinity, then some structure results are provided
in [CM09b]. Otherwise, we have a new cocompact G-action on a transverse space Xξ. On
the one hand, the kernel of this G-action is amenable, and thus described by Theorem A.
On the other hand, the remaining quotient of G is again a cocompact group of isometries,
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and we can therefore repeat this dichotomic analysis. This process terminates in finitely
many steps since each transverse space will sit in X with an additional Euclidean factor
by Proposition K.

Another motivation for Theorem J is the study of CAT(0) lattices (in the sense
of [CM09a]). Since many of the results in [CM09b], [CM09a] depend on the assumption
that no point at infinity be fixed simultaneously by all isometries, it was quite valuable
to know that uniform CAT(0) lattices (a.k.a CAT(0) groups) have no fixed point at
infinity except possibly on the Euclidean factor (upon passing, if needed, to the canon-
ical minimal invariant CAT(0) subspace). This was essentially established in [BS87],
see [AB98, Cor. 2.7]. It has been generalised to finitely generated CAT(0) lattices in
Proposition 3.15 of [CM09a]. However, none of these arguments seem to apply to infin-
itely generated lattices; but using Theorem J we obtain the desired statement:

Theorem L. Let X be a proper CAT(0) space without Euclidean factor and such that
Is(X) acts cocompactly and minimally.

If Γ < Is(X) is any lattice, then there are no Γ-fixed points at infinity.

As it turns out, the relevant consequence of Theorem J applies much more generally
to unimodular groups:

Theorem M. Let X be a proper CAT(0) space and G < Is(X) a closed subgroup acting
cocompactly and minimally on X.

If G is unimodular, then its fixed points at infinity are contained in the boundary of
the Euclidean factor.

Location of the proofs. Theorems A, C and F, as well as their corollaries, are proved
in the final section of the paper. They rely on the one hand, on some facts pertaining to
the structure theory of general locally compact groups, which we collect in a preliminary
Section 2, and on the other hand on specific geometric tools, which are developed in
Sections 3 and 4.

Section 3 discusses the transverse spaces and refined bordification of X. It culminates
in a proof of the Levi decomposition (Theorem J and Proposition K). The amenability
of the “unipotent radical” in the Levi decomposition is established in Section 4, using
a notion of compactible subgroups that is analogous but quite more general than the
compaction groups studied in [CCMT11]. Compactibility is some weak form of con-
tractibility, which is confronted to the invariance of the Haar measure under conjugacy
in order to deduce Theorems L and M. The final Section 5 is devoted to the proofs of
the geometric and algebraic characterisations of amenable subgroups.

Acknowledgements. The final writing of this paper was partly accomplished when
both authors were visiting the Mittag-Leffler Institute, whose hospitality was greatly
appreciated. Thanks are also due to Ami Eisenmann for pointing out Corollary E.

2. On the structure of locally compact groups

It seems that all the problems concerning the structure of locally compact
groups have been completely solved.

Hidehiko Yamabe, [Yam53, p. 352]
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According to the solution to Hilbert’s fifth problem, which we shall refer to as Yam-
abe’s theorem in the sequel, every locally compact group G such that G/G◦ is compact
has a unique maximal compact normal subgroup W such that G/W is a virtually con-
nected Lie group (see [Yam53] and Theorem 4.6 in [MZ55]). This plays a fundamental
role in the proof of the following.

Theorem 2.1. Let Y be a locally compact group such that the group of components
Y/Y ◦ is locally elliptic.

Then Y/RadLE(Y ) is a Lie group, Y ◦RadLE(Y ) is open in Y and the discrete quotient
Y/(Y ◦RadLE(Y )) is virtually soluble.

The part of the statement not regarding virtual solubility was obtained in Theorem A.5
from [CT11].

We emphasize that the discrete quotient Y/(Y ◦RadLE(Y )) need not be virtually
torsion-free. Indeed, this is illustrated by the semi-direct product

Y = R2 o Cp∞ < R2 oO(2),

where Cp∞ denote the group of all pn-roots of unity with p a prime and n ≥ 0 an arbitrary
integer. In this example the radical RadLE(Y ) is trivial and the group of components
Y/Y ◦ ∼= Cp∞ is abelian and locally elliptic, but not virtually torsion-free.

The proof of Theorem 2.1 requires some preparation and will be given at the end of
this chapter.

2.A. Locally compact subgroups of Lie groups. Following the general convention
in the theory of locally compact groups, we define a Lie group as a locally compact
group G such that the identity component G◦ is open in G and is a connected Lie group
in the usual sense.

Proposition 2.2. Let G be a Lie group and H be a locally compact group admitting a
continuous faithful homomorphism into G.

Then we have the following.

(i) H is a Lie group.
(ii) If G/G◦ is virtually soluble, then the following assertions are equivalent:

(a) H/H◦ is virtually soluble;
(b) H/H◦ is amenable;
(c) H/H◦ does not contain non-abelian free subgroups.

Proof. (i) is an immediate consequence of the characterization of Lie groups as those
locally compact groups having no small subgroups, see [MZ55].

(ii) Assume that G/G◦ is virtually soluble. The implications (a) ⇒ (b) ⇒ (c) are
clear. We assume henceforth that (c) holds. Let α : H → G be a continuous faithful

homomorphism, let B = α(H) and A = α(H◦). Thus A is a closed connected normal
subgroup of B, hence A ≤ B◦.

By Theorem 2.1 from Chapter XVI in [Hoc65], the quotient of a connected Lie group
by a dense connected normal subgroup is abelian. This implies that A/α(H◦) is abelian.
So is thus H1/H◦, where H1 = α−1(A). Let also H2 = α−1(B◦). Then the discrete
group H2/H1 embeds in the connected Lie group B◦/A. By hypothesis H2/H1 does
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not contain non-abelian free subgroups. It must therefore be virtually soluble by the
Tits alternative [Tit72]. Thus H2/H◦ is virtually soluble, and it remains to show that
H/H2 is virtually soluble. Since the latter embeds continuously and faithfully in B/B◦,
it suffices to prove that B/B◦ is virtually soluble. In other words, we have reduced the
problem to the special case when H = B is a closed subgroup of a Lie group G with
G/G◦ virtually soluble. This is what we assume henceforth.

Since H◦ is contained in G◦, there is no loss of generality in assuming that G is
connected.

Let R be the soluble radical of H◦ and S = H◦/R. Let J be the inverse image in
H of ZH/R(S). Since J is an extension of R by a subgroup of H/H◦, it follows that J
does not contain non-abelian free subgroups. Moreover, since the outer automorphism
group of the semisimple Lie group S is finite, it follows that the image of J in H/H◦

is of finite index. By the Tits alternative, a subgroup of a connected Lie group which
does not have free subgroups must be virtually soluble. Thus J , and hence also H/H◦,
is virtually soluble, as desired. �

2.B. Central extensions of locally elliptic groups.

Proposition 2.3. Let G be a locally compact group and Z < G be a closed subgroup
contained in the centre Z (G).

If G/Z is locally elliptic, then G/RadLE(G) is abelian (and torsion-free).

Proposition 2.3 is a companion to the following classical result.

Theorem 2.4 (Ušakov [Uša63]). Let G be a locally compact group in which every con-
jugacy class has compact closure.

Then the union of all compact subgroups of G forms a closed normal subgroup, which
therefore coincides with RadLE(G), and the corresponding quotient G/RadLE(G) is
abelian (and torsion-free). �

Proof of Proposition 2.3. We are given a short exact sequence 1 → Z → G → Q → 1
with Z central in G and Q locally elliptic. Let G′ = G/RadLE(G) and Z ′ be the closure
of the image of Z in G′; write Q′ = G′/Z ′ and consider the short exact sequence

1→ Z ′ → G′ → Q′ → 1.

The normal subgroup Z ′ is central in G′ (since the image of Z is dense) and the quotient
Q′ is locally elliptic (since it is a quotient of Q). Thus the latter short exact sequence
satisfies the hypotheses of the Proposition. We need to show that G′ is abelian.

Let now g1, g2 ∈ G′. Then {g1, g2} is contained in a group H which an extension
of Z ′ by a compact group since Q′ is locally elliptic. Thus every conjugacy class in H
has compact closure, and it follows from Theorem 2.4 that H/RadLE(H) is abelian and
torsion-free.

We first specialize this observation to the case when g1, g2 are both elliptic. It then
follows that g1, g2 ∈ RadLE(H), and thus that g1, g2 belong to a common compact
subgroup of G′. Therefore the set of elliptic elements of G′ is a subgroup, and must
therefore be contained in RadLE(G′) = 1. It follows that G′ has no nontrivial compact
subgroup.
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Applying again the observation above to two arbitrary elements g1, g2, and taking now
into account that RadLE(H) is trivial (since G′ has no nontrivial compact subgroup),
we infer that H is abelian and, hence, that g1 and g2 commute. Thus G′ is abelian, as
desired. �

2.C. Connected quotients and Proof of Theorem 2.1. The last tool that we need
is the following fact; for the proof, we refer to Lemma 2.4 in [CCMT11].

Lemma 2.5. Let G be a locally compact group with a quotient map π : G � L onto a
Lie group L. Then π(G◦) = L◦. �

As pointed out in [CCMT11], this statement can fail if L is not Lie; for an elementary
substitute in the general case, see Lemma 5.3 below.

Proof of Theorem 2.1. Let Y be a locally compact group such that Y/Y ◦ is locally el-
liptic. In order to prove the Theorem, we may assume without loss of generality that
RadLE(Y ◦) = 1. Thus Y ◦ is a connected Lie group by Yamabe’s theorem. Theorem A.5
from [CT11] then yields that Y ◦RadLE(Y ) is open in Y . In particular Y/RadLE(Y ) is
a Lie group.

It remains to show that Y/(Y ◦RadLE(Y )) is virtually soluble.
Let π : Y → Aut(Y ◦) be the homomorphism induced by the conjugation action of Y

on Y ◦. Since Aut(Y ◦) acts faithfully on the Lie algebra of Y ◦, we may assume that π
takes its values in GLn(R) for some n. By Proposition 2.2, the group π(Y ) (endowed
with the quotient topology from Y/Ker(π)) is a Lie group. Consequently Lemma 2.5
yields π(Y ◦) = π(Y )◦. In particular the group of components π(Y )/π(Y )◦ is a quotient
of Y/Y ◦, and is thus locally elliptic, hence amenable. Invoking Proposition 2.2 again, it
follows that π(Y )/π(Y )◦ is virtually soluble.

Since Ker(π) = ZY (Y ◦) > RadLE(Y ), all it remains to show is that

Y ◦ZY (Y ◦)/Y ◦RadLE(Y ) ∼= ZY (Y ◦)/Y ◦RadLE(Y ) ∩Z (Y ◦)

is virtually soluble. Observing further that

Y ◦RadLE(Y ) ∩Z (Y ◦) = (Y ◦ ∩ZY (Y ◦)) RadLE(Y ) = Z (Y ◦) RadLE(Y ),

the remaining statement to be proven is that ZY (Y ◦)/Z (Y ◦) RadLE(Y ) is virtually
soluble.

Notice that Z = Z (Y ◦) is central in ZY (Y ◦). Moreover the quotient ZY (Y ◦)/Z ∼=
Y ◦ZY (Y ◦)/Y ◦ is locally elliptic, as it is isomorphic to a subgroup of Y/Y ◦. We are
thus in a position to apply Proposition 2.3 to the group ZY (Y ◦). This implies that
ZY (Y ◦)/RadLE(ZY (Y ◦)) is abelian. Hence so are the groups ZY (Y ◦)/RadLE(Y ) and
ZY (Y ◦)/Z (Y ◦) RadLE(Y ). This concludes the proof. �

3. Horoactions and Levi decompositions

3.A. Transverse spaces and horoactions. To each point ξ ∈ ∂X at infinity of a
CAT(0) space X, one associates a new CAT(0) space Xξ called the transverse space
of ξ and defined as follows. Consider the set X∗ξ of all rays r : R+ → X pointing to ξ.
We claim that the infimal distance

dξ(r, r
′) = inf

t,t′≥0
d(r(t), r′(t′))
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between rays is a pseudometric. Indeed, this follows from the convexity of the distance:
more precisely, there is a constant C (which is none other than the difference between
the Busemann functions associated to r and r′) such that

(3.i) dξ(r, r
′) = lim

t→∞
d(r(t), r′(t+ C))

holds. Now we define Xξ to be the (Hausdorff) metric completion of the pseudometric
space X∗ξ , still denoting the resulting metric by dξ. The formula (3.i) shows that Xξ is

a CAT(0) space and there is a canonical 1-Lipschitz map X → Xξ with dense image.

Any isometry g of X induces an isometry Xξ → Xgξ. In particular, there is a canonical
isometric action of the stabiliser Is(X)ξ on Xξ.

Definition 3.1. The isometric Is(X)ξ-action on R×Xξ given by

ωξ : Gξ −→ Is
(
R×Xξ

)

ωξ(g) : (t, x) 7−→ (t+ βξ(g), g.x)

is called the horoaction. Here, βξ(g) is the Busemann character associated to ξ,
which we recall can be expressed as

βξ(g) = lim
t→∞

(
d(r(t), x0)− d(r(t), gx0)

)
,

where r is any ray pointing to ξ and x0 any point of X.

Remark 3.2. This definition shows that the kernel Ker(ωξ) of the horoaction is precisely
the normal subgroup Gu

ξ �Gξ introduced before the statement of Theorem J.

Some basic properties of the transverse space Xξ are collected in the following propo-
sition. A point ξ ∈ ∂X is called a cocompact point at infinity if its stabiliser Is(X)ξ
acts cocompactly on X.

Proposition 3.3. Let ξ ∈ Xξ. We have the following.

(i) Xξ is a complete CAT(0) space.
(ii) The canonical homomorphism Is(X)ξ → Is(Xξ) is continuous.

(iii) If X is of bounded geometry, then so is Xξ; in particular, Xξ is proper in that case.
(iv) If X is of bounded geometry, then it has finite depth.
(v) If a subgroup of Is(X)ξ acts cocompactly on X, then it acts cocompactly on Xξ. In

particular, Xξ is a cocompact space whenever ξ is a cocompact point.

Proof. For (i), (ii) and (iii), see Proposition 4.3 from [Cap09]. As for (iv), it follows from
Corollary 4.4 in [Cap09]. The last item is straightforward. �

Remark 3.4. Given a proper CAT(0) space X and a closed subgroup G ⊆ Is(X) fixing
a point ξ ∈ ∂X, we warn the reader that the image ωξ(G) of G under the horoaction
need not be closed in Is(R×Xξ). Indeed, consider the CAT(0) space X = H×T , defined
as the product of the hyperbolic plane H = H2 and the p+ 1-regular tree T , where T is
viewed as the Bruhat–Tits tree of SL2(Qp). Let G ⊆ Is(X) be the infinite cyclic group

G = {
(

1 z
0 1

)
| z ∈ Z} diagonally embedded in SL2(R)×SL2(Qp) ⊆ Is(X). Then G is

discrete, hence closed in Is(X). It fixes a point ξ at infinity of the H2-factor, annihilates
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the Busemann character βξ associated to that point, and fixes a point x ∈ T in the tree
factor.

Since ξ lies on the boundary of the factor H, we have Xξ = (H × T )ξ = Hξ × T ∼= T
since Hξ is reduced to a singleton because H is CAT(−1). In other words there is a
canonical isometry T → Xξ which is Is(X)ξ-equivariant. In particular the closure of the
image ωξ(G) of G under the horoaction in Is(R×Xξ) is isomorphic to the closure of G
in SL2(Qp), and is thus compact and infinite. In particular ωξ(G) is not closed.

3.B. Lifting the transverse space.

. . . quelque chose d’aussi näıf que l’entreprise d’atteindre l’horizon en
marchant devant soi.

Marcel Proust, À la recherche du temps perdu – Albertine disparue,
1927

Our next goal is to construct an isometric section Xξ → X for the projection X → Xξ

when ξ is a cocompact point at infinity (or opposite a cocompact point). We first record
in Proposition 3.7 below an elementary observation which is valid under a much weaker
assumption.

Definition 3.5. Let G be any group acting by isometries on a CAT(0) space X. We call
ξ ∈ ∂X a radial limit point (of G) if there is a sequence {gn} in G such that for some
ray r0 : R+ → X pointing to ξ, the sequence g−1

n r0(0) converges to ξ while remaining at
bounded distance of r0.

Notice that in that case, the condition holds for all rays r pointing to ξ. In fact, g−1
n x0

converges to ξ while remaining at bounded distance of r for any x0 ∈ X. Therefore we
shall simply call such a sequence {gn} radial for ξ.

Remarks 3.6.

(1) If X is cocompact, then any ξ ∈ ∂X is a radial limit point.
(2) This definition should be distinguished from certain notions of conical limit

points that are not equivalent in the absence of negative curvature (for instance,
the terminology of [Hat05] is incompatible with that of [Alb99]).

(3) When no G is given, it is always understood that G = Is(X).

For radial limit points, a simple limiting argument provides the following weak form
of lifting, to be strengthened for cocompact points in Theorem 3.9 below.

Proposition 3.7. Let X be a proper CAT(0) space. For every radial limit point ξ ∈ ∂X,
there exists an isometric embedding R×Xξ → X.

The proposition has the following immediate consequence for the geometric dimen-
sion of the Tits boundary; a stronger statement for cocompact spaces will be given in
Corollary 3.20 below.

Corollary 3.8. If ξ ∈ ∂X is a radial point of the proper CAT(0) space X, then
dim(∂Xξ) ≤ dim(∂X)− 1. �
Proof of Proposition 3.7. Let r0, {gn} be as in Definition 3.5. Let tn ≥ 0 be such that
r0(tn) is the projection of g−1

n r0(0) to r0. Then, for any given r in X∗ξ , the sequence
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gn(r(tn)) remains bounded in X. Therefore there is a simultaneous accumulation point
for the family (indexed by r ∈ X∗ξ ) of sequences of isometric maps

[−tn,∞) −→ X, t 7−→ gn
(
r(t+ tn)

)
,

uniformly on bounded intervals. This accumulation point is therefore a map f∗ from X∗ξ
to the set of isometric maps R→ X. By construction, any two maps in the image of f∗

remain at bounded distance. More precisely, the (Hausdorff) distance between f∗(r)(R)
and f∗(r′)(R) is exactly dξ(r, r

′) for any r, r′ ∈ X∗ξ . Denote by T the metric space of all

lines at finite distance of f∗(r0)(R) endowed with Hausdorff distance. The union of all
these lines is a convex subset of X isometric to the product R× T , see [BH99, II.2.14];
in fact this union is closed, i.e. T is complete (compare e.g. the last sentence before
Remark 40 in [Mon06]). The map f∗ : X∗ξ → T preserves (pseudo-)distances; therefore,
Xξ is isometric to a subset of T , finishing the proof. �

Following [CM09b], we say that a point ξ′ ∈ ∂X is opposite to ξ if there is a geodesic
line inX whose extremities are ξ and ξ′. We say that ξ′ is antipodal to ξ if ∠T(ξ, ξ′) = π.
Thus the set Opp(ξ) of points opposite to ξ is contained in the set Ant(ξ) consisting of all
antipodes of ξ. It is shown in [CM09b, Proposition 7.1] that if Is(X)ξ acts cocompactly,
then Opp(ξ) is non-empty and any closed cocompact subgroup of Is(X)ξ acts transitively
on Opp(ξ).

Given ξ′ ∈ Opp(ξ), we denote by P (ξ, ξ′) the union of all geodesic lines joining ξ to
ξ′. The set P (ξ, ξ′) is closed and convex in X; moreover there is a canonical isometric
identification

(3.ii) P (ξ, ξ′) ∼= R× Y
for some complete CAT(0) space Y (see [BH99, II.2.14]). When ξ is cocompact, the
following Theorem identifies Y with Xξ and in particular provides an isometric section
Xξ → X for the canonical map X → Xξ.

Theorem 3.9. Assume that ξ is cocompact.
Then, for any ξ′ ∈ Opp(ξ), the factor Y in (3.ii) is canonicallly isometrically identified

with Xξ under the map X → Xξ. Thus, there is a canonical isometric identification
P (ξ, ξ′) ∼= R×Xξ which is Is(X)ξ,ξ′-equivariant, the space R×Xξ being endowed with
the horoaction.

Proof. Let r0 : R → X be a geodesic line with r0(−∞) = ξ′ and r0(+∞) = ξ. Since ξ
is cocompact, there is a sequence {gn} in Is(X)ξ such that d(gn.r0(0), r0(−n)) remains
bounded. By convexity, gn(r0(n)) remains bounded in X and therefore we are in par-
ticular in the situation of the proof of Proposition 3.7. We thus obtain an isometric
map

R×Xξ −→ P (ξ, ξ′) ∼= R× Y ⊆ X

preserving the product decomposition, yielding in particular a (non-canonical) isometric
embedding ι : Xξ → Y . On the other hand, the restriction of X → Xξ to P (ξ, ξ′) induces
a canonical isometric map ϑ : Y → Xξ by the definition of Xξ. Now ϑ ◦ ι is an isometric
self-map of the space Xξ which is cocompact by Proposition 3.3(v). It follows that this
self-map is onto (Proposition 4.5 in [CS11]) and thus ϑ is onto too.
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The action of Is(X)ξ,ξ′ preserves the decomposition (3.ii) by construction and thus
is a product action, see [BH99, I.5.3(4)]. The formula with βξ(g) follows by direct
computation. �

The cocompactness of ξ does not imply the cocompactness of its opposites (as il-
lustrated by Heintze manifolds [Hei74]). Nevertheless, these opposites still enjoy the
conclusions of Theorem 3.9. To make this statement precise, observe that the canonical
isometry P (ξ, ξ′) ∼= R×Xξ induces a canonical isometric embedding Xξ → Xξ′ .

Proposition 3.10. Let ξ′ be any point opposite a cocompact point ξ. Then the canonical
isometric embedding Xξ → Xξ′ is an isometry. In particular, P (ξ, ξ′) ∼= R × Xξ′ and
this identification is compatible with the horoaction ωξ′ of Is(X)ξ,ξ′.

Proof. Keep the notation of the proof of Theorem 3.9 and consider the ray r−0 : R+ → X
defined by r−0 (t) = r0(−t). Observe that the sequence {g−1

n } is as required in the proof of
Proposition 3.7 with ξ′ instead of ξ. We thus obtain an isometric embedding R×Xξ′ → X
such that one endpoint of the R-factor is ξ; we denote the opposite endpoint by ξ′′. We
therefore have an isometric embedding of R × Xξ′ → X into P (ξ′′, ξ) ∼= R × Z (for
some Z) preserving the product structures. Moreover, Theorem 3.9 provided canonical
isometries

P (ξ′, ξ) ∼= P (ξ′′, ξ) ∼= R×Xξ

preserving the product structures. At this point we have mutual isometric embeddings
of R × Xξ′ and R × Xξ into each other and conclude as in the proof of Theorem 3.9
since R×Xξ is cocompact by Proposition 3.3(v). �
Remark 3.11. It follows from Theorem 3.9 and Proposition 3.10 that if ξ ∈ ∂X is a
cocompact point, or if it is opposite a cocompact point, then the (non-Hausdorff) space
X∗ξ is already complete and the map X → Xξ is onto.

3.C. Existence of a ‘Levi decomposition’. The following result will be our tool to
investigate large stabilisers of points at infinity. Incidentally, it refines Proposition 7.1
in [CM09b] which stated that if Gξ acts cocompactly on X, then it acts transitively on
Opp(ξ).

Theorem 3.12. Let G < Is(X) be a closed subgroup and assume Gξ acts cocompactly
on X. Let N < Gξ be a subgroup that is normalised by some radial sequence {hn} in Gξ
for ξ. Let ξ′ ∈ ∂X be a limit point of {hn}; hence ξ′ ∈ Opp(ξ).

Then, writing Nu = N ∩Ker(ωξ) where ωξ is the horoaction, we have a decomposition

N = Nξ′ ·Nu

which is almost semi-direct in the sense that Nξ′ ∩Nu has compact closure. In particular
Nu acts transitively on the N -orbit of ξ′ in Opp(ξ).

The theorem applies in particular when N is a normal subgroup of Gξ. In that case,
the above decomposition hold for any ξ′ ∈ Opp(ξ) since Gξ acts transitively on Opp(ξ)
by Proposition 7.1 in [CM09b]. Thus we obtain Theorem J as the case N = Gξ, recalling
Remark 3.2 for the notation Gu

ξ .

We shall carry out the first part of the argument in a more general setting: for the
time being, we only assume that ξ is a radial limit point of G.
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Let r0 be a ray pointing to ξ and {gn} be any radial sequence as in Definition 3.5.
At this point there is no additional restriction on {gn}, though for Theorem 3.12 we
will later choose gn = hn. As in the proof of Proposition 3.7, we have (upon passing to
subsequences) a sequence of numbers tn ≥ 0 such that the sequence of maps

[−tn,∞) −→ X, t 7−→ gn
(
r0(t+ tn)

)

converges to a geodesic line σ : R → X uniformly on bounded intervals. In particular,
gnξ converges to the point η := σ(∞) and gnr0(0) to η′ := σ(−∞). We denote by
f : R × Xξ → X the isometric embedding constructed in Proposition 3.7 and observe
that f ranges in P (η, η′) by construction.

A convexity argument shows that the sequence Ad(gn)(g) = gngg
−1
n remains bounded

in G whenever g ∈ Gξ. Therefore, we can chose a map % : Gξ → G that is a (point-wise)
cluster point of the sequence Ad(gn)|Gξ . By construction, % is a group homomorphism;
it need not be continuous, see Example 3.14 below.

Proposition 3.13. In the above setting, the following hold.

(i) %(Gξ) ⊆ Gη,η′,
(ii) Ker(%) ⊆ Ker(ωη ◦ %) ⊆ Ker(ωξ),

(iii) βη ◦ % = βξ,
(iv) The isometric embedding f : R×Xξ → P (η, η′) is %-equivariant for Gξ.

Proof. Points (i) and (iv) follow from the construction of % and f . Likewise for point (iii),
using that the pointwise convergence on Busemann functions corresponds to the cone
topology on the boundary.

Turning to (ii), let g ∈ Gξ be an element acting non-trivially on Xξ. Then there is
a ray r1 asymptotic to r0 and ε > 0 such that d(gr1(t), r1(s)) ≥ ε for all s, t ≥ 0. This
implies that %(g) moves a line parallel to σ(R) by at least ε. Thus ωη(%(g)) 6= 1, which
shows that Ker(ωη ◦%) acts trivially on the transverse space Xξ. Together with (iii), this
establishes the non-trivial inclusion of (ii). �
Proof of Theorem 3.12. We now assume that Gξ is cocompact and consider the radial
sequence {hn} in Gξ given by hypothesis. We first observe that the image of {hn} in
Is(Xξ) is bounded and hence we can assume that it converges to some α ∈ Is(Xξ). We
now specialise the above discussion to the case gn = hn. In particular, η = ξ and η′ = ξ′.

The sequence Ad(ωξ(hn)) converges to Id × Ad(α) as automorphisms of Is(R ×Xξ)
and hence the diagram

Gξ
%

//

ωξ
��

Gξ,ξ′

ωξ
��

Is(R×Xξ)
Id×Ad(α)

// Is(R×Xξ)

is commutative. Since each hn normalises N , the automorphism Id × Ad(α) preserves
ωξ(N). We deduce that ωξ(N) = ωξ(%(N)) ⊆ ωξ(Nξ′) and therefore ωξ(N) = ωξ(Nξ′).
It follows that we have

N = Nξ′ ·Ker(ωξ|N ).

This provides the desired decomposition of N .
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For the compactness statement about Nξ′ ∩ Nu, we claim that this intersection acts
trivially on P (ξ, ξ′). Indeed, Nξ′ preserves P (ξ, ξ′) and the horoaction of Nu on R×Xξ

is trivial; therefore, the claim follows from Theorem 3.9. �
Proof of Proposition K. Pick p0 ∈ P (ξ, ξ′) and let R > 0 be such that X = Gξ.B(p0, R).
Given p ∈ P (ξ, ξ′), there is g ∈ Gξ such that d(g.p, p0) < R. By Proposition 7.1
in [CM09b], Gξ acts transitively on Opp(ξ); therefore, the decomposition of Theo-
rem 3.12 applied to N = Gξ shows that Gu

ξ = G ∩ Ker(ωξ) also acts transitively. Thus

there exists k ∈ Gu
ξ be such that kg.ξ′ = ξ′; in particular we have kg ∈ Gξ,ξ′ . Since both

p0 and kg.p belong to P (ξ, ξ′), we deduce from Theorem 3.9 that

d(p0, kg.p)
2 = (bξ(p0)− bξ(kg.p))2 + d(πξ(kg.x), πξ(p0))2

= (bξ(p0)− bξ(g.p))2 + d(πξ(g.x), πξ(p0))2

≤ d(g.x, p0)2 + d(g.x, p0)2

< 2R2,

where πξ denotes the Gξ action on Xξ. Thus we have P (ξ, ξ′) ⊆ Gξ,ξ′ .B(p0,
√

2R), which
confirms that Gξ,ξ′ acts cocompactly on P (ξ, ξ′). The additional statements now follow
by applying Theorem 3.9. �

The following example shows that % need not be continuous.

Example 3.14. Consider the simplicial line L whose vertex set (vn)n∈Z is linearly ordered
by the integers. Let T be the tree obtained by adding to L a collection of vertices of
valency one, say {v′n, v′′n : n ∈ Z}, where v′n and v′′n are declared adjacent to vn. We
view T as a metric tree with all edges of length one. Thus T is a CAT(0) space with
two endpoints, say ξ and ξ′. The isometry group G = Is(T ) acts cocompactly. Let
t ∈ G be the translation defined by t : (vn, v

′
n, v
′′
n) 7→ (vn−1, v

′
n−1, v

′′
n−1) for all n. We

have Gξ = Gξ,ξ′ ∼= (
∏

Z Z/2) oZ, where the cyclic factor Z is the group generated by t.
Let now % : Gξ → G be a limit point of the sequence Ad tn|Gξ . We claim that % is not

continuous.
Indeed, let fn ∈ G be defined by

fn : (vm, v
′
m, v

′′
m) 7→

{
(vm, v

′
m, v

′′
m) if m < n

(vm, v
′′
m, v

′
m) if m ≥ n

and set f∞ : (vm, v
′
m, v

′′
m) 7→ (vm, v

′′
m, v

′
m) for all m. Then limn fn = Id. On the other

hand, for all n and we have limk t
kfnt

−k = f∞ so that ρ(fn) = f∞ 6= Id. In particular %
is discontinuous at the identity.

Notice however that, although % is not continuous, the composite map ωξ ◦ % is al-
ways continuous, in view of the commutative diagram from the proof of Theorem 3.12,
recalling that the horoaction is continuous by Proposition 3.3(ii).

3.D. Iterations and the refined bordification. The concept of transverse space sug-
gests iterative constructions; this is formalised in the following definition.

Definition 3.15. A refining sequence for the CAT(0) spaceX is a sequence (ξ1, . . . , ξk)
with k ≥ 0, ξ1 ∈ ∂X and ξi+1 ∈ ∂Xξ1,...,ξi for i ≥ 1 (k = 0 corresponds to the empty
sequence). The refined bordification of X is the set of refined points (ξ1, . . . , ξk;x),
wherein (ξ1, . . . , ξk) is a refining sequence and x ∈ Xξ1,...,ξk . Thus, k = 0 corresponds
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simply to a point x ∈ X. We call k the depth of the refined point. The depth of the
space X is the supremum of the depths of its refined points. (A characterisation of the
depth of cocompact spaces will be given in Corollary 3.20 below.)

Thus the space X is contained in the refined bordification, while ∂X is a quotient of
it.

Our next goal is to iterate the constructions described in the previous sections in
order to lift transverse spaces of depth > 1 in an equivariant way with respect to their
stabilisers. Given a refining sequence (ξ1, . . . , ξk), we endow the space

Rk ×Xξ1,...,ξk

with the refined horoaction (of depth k) of Is(X)ξ1,...,ξk , which is the product of the

canonical action on Xξ1,...,ξk and the translation action on Rk provided by the product
βξ1 × · · · × βξk of the Busemann characters.

The case k = 1 in the following result is covered by Propositions 3.7 and 3.13.

Proposition 3.16. Let X be a proper CAT(0) space and G < Is(X) be a closed sub-
group acting cocompactly. For every refining sequence (ξ1, . . . , ξk), there is an isomet-
ric embedding f : Rk × Xξ1...,ξk → X and a (possibly discontinuous) homomorphism
% : Gξ1,...,ξk → G such that f is %-equivariant for Gξ1,...,ξk .

Proof. We shall construct inductively for 0 ≤ i ≤ k an isometric embedding

f (i) : Ri ×Xξ1,...,ξi

and a homomorphism

%(i) : Gξ1,...,ξi → G

such that f (i) is %(i)-equivariant for Gξ1,...,ξi . The final step i = k will yield a map

f = f (k) and a homomorphism % = %(k) enjoying the requested properties.
We start with f (0) = Id: X → X and %(0) = Id: G → G. For the inductive step, we

now let i > 0.
Viewing Xξ1,...,ξi−1

as a subspace of Ri−1 × Xξ1,...,ξi−1
, we may view ξi as a point of

∂(Ri−1 × Xξ1,...,ξi−1
). It therefore makes sense to consider the image f (i−1)(ξi), which

we denote by ξ′i ∈ ∂X. In particular we obtain an induced isometric embedding

Ri−1 ×Xξ1,...,ξi → Xξ′i
,

which we also denote by f (i−1). The induction hypothesis ensures that the isometric
embedding

Id× f (i−1) : R×Ri−1 ×Xξ1,...,ξi → R×Xξ′i

is %(i−1)-equivariant for Gξ1,...,ξi (where the domain R×Ri−1×Xξ1,...,ξi is endowed with
the refined horoaction of depth i of the stabiliser Gξ1,...,ξi).

Since G is cocompact, we can choose a sequence of isometries {g(i)
n }n in G that is

radial for ξ′i. Propositions 3.7 and 3.13 then yield an isometric embedding

f̃ (i) : R×Xξ′i
→ X
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and a homomorphism
%̃(i) : Gξ′i → G

such that f̃ (i) is %̃(i)-equivariant for Gξ′i . We then set

f (i) = f̃ (i) ◦ (Id× f (i−1)) : R×Ri−1 ×Xξ1,...,ξi → X

and
%(i) = %̃(i) ◦ %(i−1).

Since Id × f (i−1) was shown to be %(i−1)-equivariant for Gξ1,...,ξi , it follows that f (i) is

%(i)-equivariant, which completes the induction step. �
Remark 3.17. We record for later references that the homomorphism % is constructed
as a composed map % = %̃(k) ◦ · · · ◦ %̃(1), where each %̃(i) is constructed as a pointwise
limit, on its domain of definition, of a sequence of inner automorphisms of G.

The latter remark combines with the following elementary fact.

Lemma 3.18. Let G be a second countable locally compact group, H ⊆ G any sub-
group and %1, . . . , %k a sequence of (possibly discontinuous) group homomorphisms with
%1 : H → G and %i+1 : Im(%i)→ G.

If each %i is a pointwise limit, on its domain of definition, of a sequence of inner
automorphisms of G, then so is the composed map % = %k ◦ · · · ◦ %1 : H → G.

Proof. It suffices to prove the statement for k = 2; the general case follows by induction.
Let thus F be a finite subset of H and U be an open neighbourhood of %2(H) in G. There
is α ∈ Inn(G) such that α(%1(F )) ⊆ U . Since α is continuous, there is a neighbourhood
V of %1(F ) in G such that α(V ) ⊆ U . Let β ∈ Inn(G) be such that β(F ) ⊆ V . Then
αβ(F ) ⊆ U . Notice moreover that the inner automorphisms α and β can be chosen
in some fixed countable dense subgroup of G, which exists since G is assumed second
countable.

Repeating the argument for arbitrarily small neighbourhoods U of %2(H) and arbi-
trarily large finite subsets F ⊆ H, we get a net of inner automorphisms of G of the form
{αβ}U,F , whose restrictions of H have the composed homomorphism % = %2 ◦ %1 as a
limit point. By construction each element of the net belongs to a common countable
subgroup of G; therefore the above net is actually a sequence. �
Corollary 3.19. The homomorphism % : H → G provided by Proposition 3.16 is a
pointwise limit of a sequence of inner automorphisms of G.

Proof. Immediate from Remark 3.17 and Lemma 3.18, recalling that G is second count-
able because X is proper. �

We warn the reader that, although % is a pointwise limit of a sequence (αn)n≥0 of inner
automorphisms of G, this does however not imply that (αn)n≥0 admits a subsequence
whose restriction to H converges pointwise to % (this reflects the fact that an uncountable
product of metrizable topological spaces need not be first countable). However, there
does exist such a subsequence in case the subgroup H is countable.

The flat rank of a CAT(0) space is the supremum of the dimensions of its isometrically
embedded Euclidean subspaces. By Theorem C in [Kle99], the flat rank of a cocompact
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proper CAT(0) space X is given by 1 + dim(∂X), where ∂X is endowed with the Tits
metric and dim is the supremum of the topological dimensions of compact subsets.
Proposition 3.7 leads to an additional characterisation:

Corollary 3.20. Let X be a cocompact proper CAT(0) space. Then the depth of X
coincides with its flat rank.

In fact, we have dim(∂Xξ1,...,ξk) ≤ dim(∂X)−k for every refining sequence (ξ1, . . . , ξk).

Proof. The embedding Rk × Xξ1,...,ξk → X from Proposition 3.16 indeed yields the
inequality dim(∂Xξ1,...,ξk) ≤ dim(∂X)− k. Taking a refined point of maximal depth, we
deduce in particular that the flat rank of X is at least its depth. On the other hand,
it follows readily from the definitions that the flat rank of any CAT(0) space is a lower
bound for its depth. �

4. Compactible subgroups and unimodularity

4.A. Compactible subgroups. Let G be a locally compact group. We propose the
following generalization of the concept of contractible groups introduced by P. Müller-
Römer [MR76].

A (not necessarily closed) subgroup A < G is a compactible subgroup with limit
K if K < G is a compact subgroup such that for every neighbourhood U of K in G and
every finite set F ⊆ A there is α ∈ Aut(G) such that α(F ) ⊆ U . (We write Aut(G) for
the group of continuous automorphisms of G.)

A sequence {αn} in Aut(G) such that αn(a)→ K for all a ∈ A will be called a com-
pacting sequence, and we also call a sequence {gn} in G compacting if the sequence
of inner automorphisms Ad(gn) is compacting.

The main difference with the notion of compaction groups from [CCMT11] is that we
deform A within the ambient group G rather than only within itself.

Proposition 4.1. If A < G is closed and compactible, then it is amenable.

Proof. By a result of Reiter’s (Proposition 1 of §3 in [Rei71]), it suffices to prove the
following: for every finite set S ⊆ A there are non-negative ϕ ∈ L1(G) of integral one
with ‖sϕ− ϕ‖1 arbitrarily small for all s ∈ S.

Let thus S be given. Let ψ be some left K-invariant non-negative ψ ∈ L1(G) of
integral one. By continuity of the G-representation on L1(G), there is a neighbourhood
V of the identity in G such that ‖vψ − ψ‖1 is as small as desired for all v ∈ V . By
assumption there is α ∈ Aut(G) such that α(S) ⊆ V K. Let ∆G(α) be the modulus of α
(VII §1 No 4 in [Bou04]); then ϕ = ∆G(α)ψ ◦ α has the required property. �

The algebraic structure of a compactible subgroup can in fact be described more
precisely using the following observation combined with Theorem 2.1.

Proposition 4.2. Let G be a locally compact group and A < G be a compactible sub-
group. Let Y = A ·G◦.

Then Y/Y ◦ is locally elliptic.

Proof. Since Y ◦ = G◦, there is no loss of generality in assuming that G is totally dis-
connected.
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Recall that every compact subgroup of a totally disconnected locally compact group
is contained in a compact open subgroup (see Lemma 3.1 from [Cap09]). It follows that
every finite set of elements in A is contained in some compact subgroup of G. Thus A
is locally elliptic. Hence so is its closure A by Lemma 2.1 from [Cap09]. �

Corollary 4.3. Let G be a locally compact group and A < G be a closed compactible
subgroup.

Then A◦RadLE(A) is open in A and the discrete quotient A/(A◦RadLE(A)) is virtu-
ally soluble.

Proof. Let Y = A ·G◦. Thus Y/Y ◦ is locally elliptic by Proposition 4.2. Let

π : Y → Y/RadLE(Y )

be the canonical projection. By Theorem 2.1, the quotient Y/RadLE(Y ) is a Lie group
whose group of components is virtually soluble. Moreover A, and hence also A/A◦, is
amenable by Proposition 4.1. Therefore π(A) is a Lie group and π(A)/π(A)◦ is virtually
soluble by Proposition 2.2.

Since A ∩Ker(π) is contained in RadLE(A), we infer that A/RadLE(A) is a quotient
of π(A), and is thus itself a Lie group whose group of components is virtually soluble.
From Lemma 2.5, it follows that A◦RadLE(A)/RadLE(A) = (A/RadLE(A))◦. Therefore
A/A◦RadLE(A) is discrete and virtually soluble, as desired. �

4.B. Compactible subgroups and the refined bordification. Given a refined point
(ξ1, . . . , ξk;x), all the Busemann characters βξi are well-defined on the iterated stabiliser
Gξ1,...,ξk and hence also on Gξ1,...,ξk;x.

Proposition 4.4. Let X be a proper CAT(0) space and G < Is(X) be a closed subgroup
acting cocompactly. For any refined point (ξ1, . . . , ξk;x), there is a sequence in G which

is compacting for the stabiliser Gξ1,...,ξk;x ∩ (
⋂k
i=1 Kerβξi).

This strengthens a statement for totally disconnected groups contained in Proposi-
tion 4.5(iii) in [Cap09].

Proof. The group Gξ1,...,ξk;x∩(
⋂k
i=1 Kerβξi) is a point stabiliser for the refined horoaction

of Gξ1,...,ξk on Rk × Xξ1,...,ξk . Let f : Rk × Xξ1,...,ξk → X and % : Gξ1,...,ξk → G be the
maps provided by Proposition 3.16. The %-equivariance of f implies that %(Gξ1,...,ξk;x)
fixes the point f(x) ∈ X, and is thus relatively compact in G. By Corollary 3.19, the
homomorphism % is a pointwise limit of some sequence (Ad gn) of inner automorphisms
of G. Since %(Gξ1,...,ξk;x) is contained in the compact group Gf(x), it follows that (Ad gn)
is a compacting sequence for Gξ1,...,ξk;x. �

Corollary 4.5. Let G be a locally compact group acting continuously, properly and
cocompactly by isometries on X. Then the stabiliser of every point in the refined bordi-
fication is amenable.

Proof. Immediate from Propositions 4.1 and 4.4. �
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4.C. Unimodular groups do not fix points at infinity. We begin with a general
restriction for compactible subgroups in unimodular groups.

Proposition 4.6. Let G be a unimodular locally compact group, H < G a closed sub-
group and {gn}n∈N a compacting sequence for H in G.

If {gngg−1
n } remains bounded for each g ∈ G, then H is compact.

Proof. Let K < G be a compact subgroup with gnhg
−1
n → K for all h ∈ H. Let further

U ⊆ G be any non-empty relatively compact open set. We claim that the union of all
gnUg

−1
n is relatively compact.

For this claim there is no loss of generality in assuming G to be σ-compact. For each
compact set C ⊆ G, let UC = U ∩⋂n g

−1
n Cgn. As C ranges over a countable exhaustion

of G, the sets UC form a cover of U by sets closed in U . Therefore, Baire’s theorem
implies that there is some compact C such that UC has non-empty interior. Since U has
compact closure, we can find a finite set F ⊆ G such that the set UCF covers U . Since
the union of all gnFg

−1
n is relatively compact, the claim follows.

We thus have a compact set Q ⊆ G containing all gnUg
−1
n . Fix any compact neigh-

bourhood S of K in G. Let p be an integer such that p|U | > |QS|, where | · | denotes
a Haar measure on G. If, towards a contradiction, H is non-compact, then we can find
h1, . . . , hp ∈ H such that all Uhi are disjoint. However, when n is large enough, all
gnUhig

−1
n lie in QS, which is impossible by comparing the measures. �

Proof of Theorem M. Let ξ ∈ ∂X be a point fixed by the unimodular groupG. By [CM09b,
Prop. 7.1] the set Opp(ξ) is non-empty. Let ξ′ ∈ Opp(ξ). Theorem J yields a decompo-
sition

G = Gξ,ξ′ ·Gu
ξ ,

where Gu
ξ = Ker(ωξ) is the kernel of the horoaction. Any radial sequence {gn} for ξ

is compacting for Gu
ξ (this is in fact a very basic case of Proposition 4.4). Moreover,

gngg
−1
n remains bounded for all g in G = Gξ, as observed in Section 3.C. Therefore,

Proposition 4.6 implies that Gu
ξ is compact. However, a compact normal subgroup of

a group acting minimally must be trivial. We deduce that G = Gξ,ξ′ ; in particular,
G preserves P (ξ, ξ′) which is thus equal to X. In conclusion, X admits a product
decomposition X ∼= R × Xξ such that the pair {ξ, ξ′} corresponds to the boundary of
the line-factor. In particular every point ξ ∈ ∂X fixed by G lies on the boundary of the
Euclidean de Rham factor of X, as desired. �

Proof of Theorem L. Since Is(X) admits a lattice, it is unimodular. Therefore Theo-
rem M implies that Is(X) does not have a fixed point in ∂X. Now the “geometric Borel
density” established in Theorem 1.1 of [CM09a] yields the conclusion. �

5. Amenable isometry groups

La méthode de cet artificieux Bouillon, c’est [. . . ] de rester, en fin de
compte, le moyenneur des situations.

Charles-Augustin Sainte-Beuve, Causeries du lundi, tome 12, 1856
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5.A. Refined flats. We define a refined flat of depth k in X to be a flat contained
in a space of the form Xξ1,...,ξk , where (ξ1, . . . , ξk) is a refining sequence. Thus a flat of
depth 0 is a flat in X.

A key ingredient needed in the proof of Theorem A is the theorem by Adams–Ballmann
from [AB98]. We shall use the following formulation of their result.

Proposition 5.1 (Adams–Ballmann). Let X be a proper CAT(0) space of finite depth
(e.g. cocompact, see Proposition 3.3(iv)).

Every amenable group acting continuously by isometries on X stabilises a refined flat.

Proof. Follows from a repeated application of the Adams–Ballmann theorem [AB98]; the
hypothesis that the depth is finite guarantees that the process terminates after finitely
many steps. �

Before proceeding to the proof of Theorem A, we shall undertake to prove Theorem F,
providing a converse to Proposition 5.1 and thus establishing Corollary G. We point out
that Theorem F is not a direct consequence of the amenability of the kernel of the refined
horoaction, because the image of a (refined) flat stabiliser in the isometry group of that
flat need not be closed, see Remark 3.4. Therefore, we first need to record a consequence
of a theorem by Kazhdan–Margulis (see Theorem 8.16 from [Rag72]).

To this end, we recall that the space of all closed subgroups of a locally compact
group G is compact when endowed with the Chabauty topology [Cha50]. Moreover the
Chabauty space of closed subgroups is metrisable provided G is second countable; this
happens e.g. when G is a closed subgroup of Is(X), where X is a proper metric space.

Proposition 5.2. Let G be a locally compact group whose identity component G◦ has
no non-trivial compact normal subgroup. Let (Γj)j∈J be a net of discrete free subgroups
converging in the Chabauty topology to a closed subgroup L ⊆ G.

Then the neutral component L◦ is an abelian Lie group.

Proof. By van Dantzig’s theorem [vD31, page 18], the group G has an open subgroup
O (thus containing G◦) such that O/G◦ is compact. By Yamabe’s theorem RadLE(O)
is compact and G◦ is a Lie group. Moreover Theorem 2.1 implies that RadLE(O)G◦ ∼=
RadLE(O) × G◦ is open in O. Upon replacing O by that subgroup, we shall assume
henceforth that O is a direct product of a connected Lie group and a compact (profinite)
group.

Since O is open, we have L∩O = limj(Γj ∩O). Since the desired conclusion concerns
the group L◦ ⊆ G◦ ⊆ O, there is therefore no loss of generality in assume that all the
subgroups Γj are contained in O or, equivalently, that G = O. Then G ∼= K×G◦, where
K = RadLE(G) is compact and the identity component G◦ is a Lie group. Since G◦ is
a Lie group, so is L◦.

Let π : G→ G◦ be the canonical projection, which is proper since K is compact. Thus
π(Γj) is a discrete free group for all j. Let U be an open relatively compact identity
neighbourhood of the connected Lie group G◦ as provided by the Kazhdan–Margulis
theorem (see Theorem 8.16 from [Rag72]). Since L◦ ⊆ G◦, we have

L◦ = π(L◦) = 〈U ∩ π(L◦)〉 ⊆ 〈U ∩ π(L)〉 ⊆ lim
j
〈U ∩ π(Γj)〉.
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The Kazhdan–Margulis Theorem ensures that 〈U ∩ π(Γj)〉 is nilpotent, hence cyclic, for
all j. Since a limit of abelian subgroups is abelian, it follows that L◦ is abelian. �

We shall also need an elementary general fact related to Lemma 2.5 above:

Lemma 5.3. Let N be a closed normal subgroup of a locally compact group H. Then
the image of H◦ in H/N is dense in (H/N)◦. In particular, if N is compact, then we
obtain an identification H◦/(H◦ ∩N) ∼= (H/N)◦.

This statement fails for general topological groups; recall for instance that R is the
quotient of a totally disconnected group (see Exercice 17 for III §2 in [Bou60]).

Proof of the lemma. The image of H◦ in H/N lies in (H/N)◦; denote its closure by
L. Now (H/N)◦/L is a connected group contained in (H/N)/L. Writing the latter
as H/H◦N , we see that it is a quotient of the totally disconnected group H/H◦. For
locally compact groups, total disconnectedness passes to quotients (by van Dantzig’s
theorem [vD31, page 18]). Thus (H/N)◦/L is also totally disconnected, hence trivial as
claimed. The additional statement for N compact follows from the properness of the
map H → H/N . �

Here is a last preparation for the proof of Theorem F.

Lemma 5.4. Let G be a group acting isometrically on a complete CAT(0) space X and
let Y ⊆ X be a G-invariant closed convex subspace of finite coradius in X. If G preserves
a refined flat of X, then it also preserves a refined flat (of the same dimension) of Y .

Proof. The statement is formulated in such a way that it passes to transverse spaces,
since ∂X = ∂Y and since there is a canonical isometric map of finite coradius Yξ → Xξ

for all ξ ∈ ∂X. Therefore, it suffices to deal with the case of depth zero, i.e. a G-invariant
flat F ⊆ X. Since the projection π : X → Y is G-equivariant, it is enough to show that
π is isometric on F . The function x 7→ d(x, Y ) is convex and bounded, therefore it is
constant on F . Denote this constant by D. We claim that π(F ) is convex; this claim
will finish the proof because the function y 7→ d(y, F ) is constant on π(F ) and therefore
the sandwich lemma [BH99, II.2.12] will apply.

Let thus x, x′ ∈ F and let y be any point on the segment [π(x), π(x′)]. By convexity of
the metric, the distance between y and the corresponding point z on the segment [x, x′]
(for simultaneous affine parametrisations) is at most D. However, y is in Y and z is in
F . By uniqueness of the projection, we deduce y = π(z) and the claim is proved. �
Proof of Theorem F. Suppose for a contradiction that H < G := Is(X) is a non-
amenable closed subgroup which stabilises a refined flat F ⊆ Xξ1,...,ξk . Upon replacing X
by a minimal non-empty G-invariant closed convex subset, we may assume that G acts
minimally. Indeed, Lemma 5.4 ensures that H still preserves a refined flat (still denoted
by F as above) and the restriction homomorphism to the isometries of the minimal
subset has compact kernel. This reduction ensures that G has no non-trivial compact
normal subgroup, and hence the unique maximal compact normal subgroup RadLE(G◦)
of G◦ is trivial.

Notice that H ∩
(⋂k

i=1 Ker(βξi)
)

is closed and co-amenable in H. Therefore it is non-
amenable, and upon replacing H by that intersection, we may assume that H annihilates
each Busemann character βξi .
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Let N be the pointwise stabiliser of F in H. Thus N is amenable by Corollary 4.5,
so that the quotient H/N endowed with the quotient topology is non-amenable. The
H-action on F induces a continuous embedding π : H/N → Is(F ). Since Is(F ) is a Lie
group, so is H/N by Proposition 2.2(i). Moreover, since Is(F ) is amenable, the neutral
component (H/N)◦ must be amenable as well, since non-amenable connected Lie groups
cannot be continuously embedded in amenable Lie groups (this follows e.g. from the
fact that any non-trivial continuous homomorphism of a simple Lie group is proper,
see [BM96, Lemma 5.3] or [dC09]). Therefore the group of components (H/N)/(H/N)◦

is non-amenable, and hence contains a non-abelian free subgroup by Proposition 2.2(ii).
Denoting by H1 the preimage of (H/N)◦ in H, we infer that H1 is an open normal

amenable subgroup of H, and that the quotient H/H1 contains a non-abelian free sub-
group. Let now a, b ∈ H be elements which freely generate a non-abelian free subgroup
modulo H1. Then 〈a, b〉 ∩ H1 is trivial, since otherwise there would be a word in the
generators a, b which gets killed in the quotient H/H1, contradicting the presupposed
freeness. It follows that Γ = 〈a, b〉 is a discrete non-abelian free subgroup of H, hence
of G, which stabilises the refined flat F ⊆ Xξ1,...,ξk , acts faithfully on F , and annihilates
each Busemann character βξi .

Let f : Rk ×Xξ1,...,ξk → X and % : Γ→ G be the maps provided by Proposition 3.16.

Thus F ′ = f(Rk × F ) is a flat in X. Moreover, the equivariance afforded by Proposi-
tion 3.16 ensures that the map % is injective and that its image %(Γ) stabilises F ′.

By assumption the image of Γ in the Lie group Is(F ) is non-discrete. In particular
the closure of its image has a non-trivial identity component. Consequently the closure
of the image of %(Γ) in Is(F ′) has a non-trivial identity component.

Let K be the pointwise stabiliser of F ′ in G. Thus K is compact, and it follows from

Lemma 5.3 that %(Γ)
◦

has a non-trivial image in Is(F ′). Moreover Proposition 2.2(i)

implies that %(Γ)
◦

is open in %(Γ).

By Corollary 3.19, the homomorphism % : Γ → G is a pointwise limit of a sequence
(αn)n≥0 of inner automorphisms of G. Since Γ is countable, we may assume, upon
extracting, that the sequence of restrictions (αn|Γ)n converges pointwise to %. Up to a
further extraction, we may also assume that the sequence of conjugates αn(Γ) converges
in the Chabauty topology to some closed subgroup L. It then follows that %(Γ), and

hence also the closure %(Γ), is contained in L.

By Proposition 5.2 the identity component L◦ is an abelian Lie group. Thus %(Γ)
◦

is

an abelian open normal subgroup of %(Γ). Therefore %(Γ) ∩ %(Γ)
◦

is an abelian normal

subgroup of %(Γ) which is dense in %(Γ)
◦
. By construction %(Γ) is a non-abelian free

group, and has thus no non-trivial abelian normal subgroup. Consequently %(Γ)∩ %(Γ)
◦

is trivial, and so is %(Γ)
◦
. This contradicts the fact that %(Γ)

◦
has a non-trivial image

in Is(F ′). �

5.B. Structure of amenable closed subgroups. We finally record the following clas-
sical characterisation of amenability for connected locally compact groups:

Proposition 5.5. A connected locally compact group is amenable if and only if it is
{connected soluble}-by-compact.
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Proof. Let G be a connected locally compact group. By the solution of Hilbert’s fifth
problem [MZ55, 4.6], G is compact-by-Lie. Furstenberg has shown that a connected
Lie group is amenable if and only if it is {connected soluble}-by-compact [Fur63, Theo-
rem 1.7]. Finally, Iwasawa has shown that the class of {connected soluble}-by-compact
l.c. groups is closed under extensions [Iwa49, Theorem 18]. �

Proof of Theorem A. The ‘if’ part is clear. Conversely, let H < Is(X) be a closed
amenable subgroup. Then H◦ is soluble-by-compact in view of Proposition 5.5 and
hence (1) holds.

By Proposition 5.1, we find an H-invariant refined flat F ⊂ Xξ1,...,ξk of depth k. In
particular we have a continuous homomorphism

ϕ : H → Is(F ) ∼= Rn oO(n),

where n = dimF . We endow the image ϕ(H) with the quotient topology from H. By
Proposition 2.2, the amenable locally compact group ϕ(H) is a Lie group and its group of
components ϕ(H)/ϕ(H)◦ is virtually soluble. By Lemma 2.5, we have ϕ(H◦) = ϕ(H)◦.
Thus the normal subgroup K = H◦ · Ker(ϕ) is open in H and the quotient H/K ∼=
ϕ(H)/ϕ(H)◦ is virtually soluble.

The kernel A = Ker(ϕ) fixes F pointwise, and is thus compactible by Proposition 4.4.
Therefore A◦RadLE(A) is open in A and the quotient A/A◦RadLE(A) is virtually soluble
by Proposition 4.2. In particular the group

H◦ ·A◦RadLE(A) = H◦RadLE(A)

is open in K = H◦ · A, hence in H. Since RadLE(A) is characteristic in A, we have
RadLE(A) ≤ RadLE(H), and we infer that H◦RadLE(H) is open in H, which proves
assertion (2).

For (3), recall from the above that H/K and A/A◦RadLE(A) are both virtually
soluble. Therefore, so is H◦A/H◦RadLE(A) = K/H◦RadLE(A). Virtual solubility
being stable under group extensions, we infer that H/H◦RadLE(A), and (3) follows
since RadLE(A) ≤ RadLE(H). �

The following lemma is well-known; a proof can be found in [dlHRV94, Proposition 4].

Lemma 5.6. A homomorphic image of a finitely generated group in any compact group
is residually finite (thus the same holds for its image in a locally elliptic group). �

Proof of Corollary B. Let X be a cocompact proper CAT(0) space with an isometric
Γ-action and let H be the closure of the image of Γ in Is(X). The image of Γ in
H/(H◦RadLE(H)) is trivial since this quotient is virtually soluble by Theorem A; thus
H = H◦RadLE(H). Since H◦ is soluble-by-compact by Theorem A, we deduce from
Lemma 5.6 that the image of Γ in H/RadLE(H) is soluble and hence trivial. It follows
H = RadLE(H), but this implies that H is compact since Γ is finitely generated; we
finally conclude that H is trivial by applying again the residual finiteness argument. �

We now turn to Corollary H and refer to [CFP96] for an introduction to Thompson’s
groups F , T and V . Since T and V are simple and contain F , it suffices to produce
a non-trivial kernel in F to ensure that the entire T - or V -action be trivial. Thus the
following statement implies Corollary H.
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Corollary 5.7. Any isometric action of Thompson’s group F on any proper cocompact
CAT(0) space factors through the abelianisation F → F/[F, F ] ∼= Z2.

Proof. Let X be any proper cocompact CAT(0) space and assume that F acts isomet-
rically on X; let π : F → Is(X) be the associated group homomorphism. According to
Corollary 2.3 of [CM09a], the group F fixes a point in the compactification X ′ whenever
it acts isometrically on any proper CAT(0) space X ′. Thus in particular it satisfies the
conclusion of the Adams–Ballmann theorem and therefore we can deduce as in Proposi-
tion 5.1 that F preserves a refined flat (in fact a refined point) for X. Now Theorem F
implies that the closure H < Is(X) of π(F ) is amenable; we can therefore apply Theo-
rem A. Recalling that the derived subgroup [F, F ] is simple, we deduce that π([F, F ]) lies
in H◦RadLE(H). Recall next that [F, F ] contains many isomorphic copies of F ; we chose
one such subgroup F1

∼= F in [F, F ]. By Lemma 5.6, the homomorphism from F1 to(
H◦RadLE(H)

)
/H◦ must annihilate [F1, F1] since the latter is simple. Thus π([F1, F1])

is contained in the soluble-by-compact group H◦. Choosing once again an isomorphic
copy F2

∼= F in [F1, F1], one more application of Lemma 5.6 shows that π([F2, F2]) lies i
n the soluble radical of H◦. This shows that π([F2, F2]) is trivial since [F2, F2] is simple
(non-abelian). We have established that π has a non-trivial kernel; this implies that π
is trivial on all of [F, F ] since that group is simple. �

The strategy of the above proof is the following: (i) prove a refined fixed point (or flat)
property for a subgroup (not necessarily involving amenability); (ii) apply Theorem F
to deduce that its closure in Is(X) is amenable; (iii) play off the structure provided by
Theorem A against the structure of the given group.

This strategy can be implemented in many other cases; here is a first example:

Corollary 5.8. Let G be a finitely generated group isomorphic to G × G. For any
isometric G-action on any proper cocompact CAT(0) space, there is a decomposition
G ∼= G×G for which that action factors through the first factor.

Moreover, if one chooses a priori decompositions G ∼= Gn for n ∈ N, then for any
isometric G-action on any proper cocompact CAT(0) space of flat rank < n, one of the
n factors in Gn acts trivially.

We recall that every countable group can be embedded in a group G ∼= G × G as
above [Mei82, Cor. 6]. Moreover, there are torsion-free examples; for instance, following
the proof of Proposition 7 in [Mei82], consider two copies U, V of the Baumslag–Solitar
group BS(2, 3):

U =
〈
a, t : t−1a2t = a3

〉
, V =

〈
b, s : s−1b2s = b3

〉
.

Then t and [a, t−1at] freely generate a free group, as do [b, s−1bs] and s. Define T to be
the free product of U and V amalgamated over these free subgroups (with the generators
identified in the order given above). Then Meier exhibits a (non-trivial) finitely generated
subgroup G ∼= G × G in the full product TN. Notice that T is obtained by successive
HNN-extensions and amalgamated products, starting with infinite cyclic groups and
amalgamating over free subgroups (of rank one and two). Elementary Bass-Serre theory
(or classical HNN-theory [Neu54, §5]) thus implies that T is torsion-free; hence G is
torsion-free as well.
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Proof of Corollary 5.8. It suffices to prove the second statement since the factors of Gn

can be suitably re-arranged as G×G. Therefore, we fix some decomposition G ∼= Gn and
an isometric G-action on a proper cocompact CAT(0) space X of flat rank < n. In order
to be able to pass to successive transverse spaces, we only retain the weaker information
that X is proper of flat rank < n (which is preserved thanks to Proposition 3.16). Such
a space cannot contain a product of n unbounded convex subspaces. Therefore, the
splitting theorem of [Mon06] (specifically, Corollary 10 therein) implies that either G
fixes a point at infinity of X, or one of the factors of Gn preserves a bounded subset
of X, hence fixing a point. In any case, it follows by induction that one factor H ∼= G
of Gn fixes a refined point. Applying successively Theorem F and Theorem A, we find
that the image of H is Is(X) is obtained by various extensions of soluble and residually
finite groups (appealing to Lemma 5.6 for the residual finiteness). However, a finitely
generated group isomorphic to its own square does not have any non-trivial finite or
abelian quotient; thus H acts trivially indeed. �

It was pointed out in the introduction, as a consequence of Theorem C, that the
wreath product Z o Z cannot be a discrete subgroup of Is(X) for any proper cocompact
CAT(0) space X. The assumption of discreteness is essential in that observation, since
the group Z o Z does admit faithful actions by automorphisms on regular locally finite
trees. This should however be contrasted with the torison-free elementarily amenable

group G =
(

(Z o Z) o Z
)
o Z · · · , which is more precisely defined as the increasing union

of the groups

G1 = Z, Gn+1 = Gn o Z =
(⊕

Z

Gn

)
o Z,

where Gn is identified with its copy at the coordinate zero in Gn+1.

Corollary 5.9. For any isometric G-action on any proper cocompact CAT(0) space,
there is a subgroup of G isomorphic to G which acts trivially.

Proof. This follows from Theorem A once one observes that the kernel of any homomor-
phism from G to any soluble group and to any locally {residually finite} group contains
a subgroup isomorphic to G. �

5.C. Discrete amenable subgroups and soluble groups of finite rank. In view
of Theorem A, discrete amenable subgroups of Is(X) are {locally finite}-by-{virtually
soluble}. The main result of this section is the much more precise statement of Theo-
rem C. We recall that a group is said be of Prüfer rank r if every finitely generated
subgroup can be generated by at most r elements, and if r is the smallest such integer.
This notion is sometimes simply called the rank in the literature and we shall do so for
brevity’s sake. For example, the additive group Qn is of rank n. Soluble groups of finite
rank have been studied extensively since Mal’cev’s foundational work in the early 1950’s.
An overview of their theory, including many far-reaching results can be consulted in the
book [LR04]. At this point, we only record the elementary fact that the class of groups
of finite rank is closed under group extensions: more precisely, if G is a group with a
normal subgroup N such that N and G/N have rank r and r′ respectively, then G has
rank at most r + r′.
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The proof of Theorem C has a structure roughly parallel to that of Theorem A, and
will be given at the end of the section. We shall need to study stabilisers of refined
flats; the discreteness assumption on Γ is exploited in combination with some rigidity
properties on discrete amenable subgroups of Lie groups.

Our first task is thus to collect those various subsidiary results, notably on Lie groups.
Although they are probably well-known, we nevertheless supply proofs, by lack of ap-
propriate references. The first is a variation on Bieberbach’s theorem.

Proposition 5.10. Let n ≥ 0. Given a closed subgroup H of the Lie group Rn oO(n),
the group of components H/H◦ is {free abelian of rank ≤ n}-by-finite.

Notice that the order of the finite quotient cannot be bounded by a function of n,
since the circle group S1 contains cyclic subgroups of arbitrarily large order.

Proof of Proposition 5.10. Let En be the Euclidean n-space, so that Is(En) = RnoO(n).
We work by induction on n, the base case n = 0 being trivial.

If H stabilises a proper Euclidean subspace, let N be the (compact) kernel of the H-
action on that space; thus H/N can be identified with a closed subgroup of RmoO(m)
for m < n. By induction, (H/N)/(H/N)◦ is {free abelian of rank ≤ m}-by-finite. But
this group is a quotient of H/H◦ by Lemma 5.3. The kernel of this quotient is finite, so
that in this case we are done since a finite-by-{free abelian of rank ≤ m}-by-finite group
is {free abelian of rank ≤ m}-by-finite.

We assume henceforth that H acts minimally on En. Let F ⊂ En be a minimal
H◦-invariant Euclidean subspace, and set m = dim(F ). The union of the collection
of all such subspaces is itself a Euclidean subspace which is H-invariant, and must
therefore coincide with En by minimality. Therefore we obtain an H-invariant product
decomposition

En ∼= Em ×En−m

with the additional property that the H◦-action on the second factor En−m is trivial.
Let p : H → Is(Em) and p′ : H → Is(En−m) be the canonical projections. We have seen
that H◦ ≤ Ker(p′) = H ′.

Pick a base point x ∈ Em and set Hx = StabH(x). Thus the intersection Hx ∩ H ′
is compact, and hence the projection p′(Hx) ∼= Hx/(Hx ∩ H ′) is a closed subgroup of
Is(En−m).

By [DS02], the neutral component H◦ acts transitively on its minimal subspace F ∼=
Em. Equivalently p(H◦) is transitive on Em, and thus H = Hx · H◦. In particular
H = Hx ·H ′, hence we have p′(H) ∼= H/H ′ ∼= Hx/(Hx ∩H ′) ∼= p′(Hx). Therefore, the
projection p′(H) is a closed subgroup of Is(En−m), which must be discrete since p′(H◦)
is trivial. In particular H/H ′ is virtually {free abelian of rank ≤ n−m} by a version of
Bieberbach’s theorem, see e.g. Theorem 2 in [Oli80].

As H◦ ≤ H ′, the transitivity of p(H◦) on Em also implies H ′ = (Hx ∩ H ′) · H◦.
It follows that H ′/H◦ is compact, hence finite. Consequently H/H◦ is an extension
of H/H ′ by a finite normal subgroup. Thus H/H◦ is virtually a free abelian group of
rank ≤ n−m, as desired. �
Proposition 5.11. Let G be a connected Lie group. Then there is r = r(G) such that
every discrete amenable subgroup Γ < G has the following properties:
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(i) Γ is {torsion-free polycyclic of rank ≤ r}-by-finite.
(ii) RadLE(Γ) is finite and Γ/RadLE(Γ) is {torsion-free polycyclic of rank ≤ r}-by-
{finite of order ≤ r}.

Proof. Let Γ < G be a discrete amenable subgroup. Then Γ is virtually soluble by Propo-
sition 2.2. By Corollary 8.5 from [Rag72], any non-empty collection of soluble subgroups
of G has a maximal element. Recalling that polycyclic groups are precisely those soluble
groups satisfying the ascending chain condition on subgroups (see e.g. [LR04, 1.3.1]), we
infer that Γ is virtually polycyclic. Consequently it is finitely generated and virtually
{torsion-free polycyclic}. The bound on the rank of the polycylic kernel in terms of G
follows from [Aus60] (and can be traced back to Zassenhaus [Zas38]). Thus (i) holds,
and the finiteness of RadLE(Γ) follows.

Let now Γ < G be a discrete subgroup which is {torsion-free polycyclic of rank n}-
by-finite. In order to establish (ii), we proceed by induction on n, the case n = 0 being
trivial. Assume now n > 0. Then Γ has a non-trivial free abelian normal subgroup, say
Zm ∼= A < Γ, with m ≤ n. The conjugation action of Γ on A yields a homomorphism
π : Γ→ GLm(Z) whose kernel is ZΓ(A) ·A.

The index of a torsion-free normal subgroup π(Γ) is bounded above by a constant
depending only on m. Therefore π(Γ) is {torsion-free polycyclic of rank ≤ r′}-by-{finite
of order ≤ r′} for some r′ depending only on n.

On the other hand, the induction hypothesis applies to the quotient Ker(π)/A, which
is a central extension of Ker(π). Bearing in mind that a central extension of a locally
elliptic group is {locally elliptic}-by-{torsion-free abelian} (see Proposition 2.3), we infer
that the group Ker(π)/RadLE(Ker(π)) is {torsion-free polycyclic of rank ≤ r′′}-by-
{finite of order ≤ r′′} for some r′′ depending only on n. Assertion (ii) follows since
RadLE(Ker(π)) < RadLE(Γ). �

Finally, we record an abstract group theoretic property.

Lemma 5.12. Let Γ be a countable group. Assume there are constants r,M ≥ 0 such
that for every finitely generated subgroup Λ < Γ, the radical RadLE(Λ) is finite and the
quotient Λ/RadLE(Λ) is {torsion-free polycyclic of rank ≤ r}-by-{finite of order ≤M}.

Then Γ/RadLE(Γ) is {torsion-free soluble of rank ≤ r}-by-finite.

Proof. We enumerate the elements of Γ as Γ = {γ1, γ2, . . . }. For each n > 0, let Λn =
〈γ1, . . . , γn〉 and Rn = RadLE(Λn).

For m ≥ n, the finite quotient Rn/Rm ∩ Rn embeds in Λm/Rm. Its order is thus
bounded above by M . Since Rn is finite, we find a sequence of indices (mi)i such
that mi+1 > mi ≥ n and that the intersection Rmi ∩ Rn is constant and has index at
most M in Rn. Setting R′n = Rmi ∩Rn and noticing that

⋂
iRmi is finite group that is

normalised by all elements of Γ, we infer that R′n ⊆
⋂
iRmi ⊆ RadLE(Γ). This shows

that [Rn : Rn∩RadLE(Γ)] ≤M for all n. It follows that the image of Λn in the quotient
Γ/RadLE(Γ) is {finite of order ≤M}-by-{torsion-free polycyclic of rank ≤ r}-by-{finite
of order ≤M}.

We infer that there is some N such that every finitely generated subgroup of the
quotient H = Γ/RadLE(Γ) is {torsion-free polycyclic of rank ≤ r}-by-{finite of order ≤
N}. In particular H is of finite rank. It only remains to show that H is virtually
torsion-free.
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To this end, let H ′ be the subgroup of H generated by all N ! powers. Thus H ′ is
normal and the quotient H/H ′ is of finite exponent ≤ N !. In particular, for any finitely
generated subgroup Λ < H, the image of Λ in H/H ′ is polycyclic-by-finite of finite
exponent, hence finite. Consequently H/H ′ is locally finite. On the other hand H/H ′ is
of finite rank since H is so. Remark that a locally finite group of finite rank and of finite
exponent must be finite by the solution to the restricted Burnside problem1 (see [Zel91]
and references therein). We conclude that H/H ′ is finite.

Finally, given h ∈ H ′, there is a finitely generated subgroup Λ of H such that h
belongs to the subgroup Λ′ of Λ generated by all N ! powers of elements of Λ. Since Λ is
{torsion-free}-by-{finite of order ≤ N}, it follows that Λ′ is torsion-free. Consequently
H ′ is torsion-free as well. �

Proof of Theorem C. Let G = Is(X) and Γ < Is(X) be a discrete amenable subgroup.
We already know from Theorem A that Γ/RadLE(Γ) is virtually soluble. We need to
show that it is in fact virtually {torsion-free soluble of rank ≤ r} for some r depending
only on X.

We start with a preliminary observation.
Pick a basepoint x ∈ X and let R > 0 be large enough so that every G-orbit meets

the closed ball B(x,R) of radius R around x. For each z ∈ X, the stabiliser Gz is
compact. Its image in the totally disconnected quotient G/G◦ is compact as well, and
hence contained in some compact open subgroup of G/G◦ by [Cap09, Lemma 3.1]. Let
Oz < G be the preimage in G of such a compact open subgroup. Thus Oz is open,
contains Gz ·G◦, and the quotient Oz/G

◦ is compact.
We next remark that the union

⋃
z∈B(x,R)Gz is a relatively compact subset of G.

We can therefore find a finite set z1, . . . , zn such that
⋃
z∈B(x,R)Gz ⊂

⋃n
i=1Ozi . Let

O =
⋂n
i=1Ozi . Thus O is open, hence contains G◦, and the quotient O/G◦ is compact.

We claim that there is a uniform bound N such that for all z ∈ B(x,R), we have
[GzG

◦ : GzG
◦ ∩ O] ≤ N . The fact that this index is finite is clear since O is open.

Since GzG
◦ ⊂ ⋃n

i=1Ozi , it follows that GzG
◦ is covered by left cosets of O in the various

groups Ozi . Therefore we obtain

[GzG
◦ : GzG

◦ ∩O] ≤
n∑

i=1

[Ozi : O].

The claim follows by setting N =
∑n

i=1 [Ozi : O].

We now return to the discrete amenable subgroup Γ < G. By Proposition 5.1, there
is a Γ-invariant refined flat F ⊂ Xξ1,...,ξk of depth k ≥ 0.

Let f : Rk × Xξ1...,ξk → X and %′ : Gξ1,...,ξk → G be the maps provided by Propo-

sition 3.16. By assumption Γ stabilises the flat Rk × F ⊆ Rk × Xξ1...,ξk . Since f is

%′-equivariant, it follows that %′(Γ) stabilises the flat F ′ = f(Rk × F ) ⊆ X.

By cocompactness, there is some h ∈ G such that h(F ′) meets the ball B(x,R). We
set % = Adh ◦ %′, so that %(Γ) stabilises h(F ′).

1It is quite possible that a softer argument could be provided in the present setting by invoking
Corollary 2 page 141 of [Šun71].



30 P.-E. CAPRACE AND N. MONOD

Let H = %(Γ). Denote by K < H the pointwise stabiliser of h(F ′), which is thus
compact and normal in H. The quotient H/K embeds as a closed subgroup of the Lie
group Is(h(F ′)). Since X is cocompact, the dimension of F ′ is bounded above by a
constant depending only on X. By Lemma 2.5 (or Lemma 5.3), the neutral component
H◦ maps onto the neutral component of H/K. Consequently Proposition 5.10 ensures
that the quotient H/(H◦K) is {free abelian of rank ≤ r′}-by-finite, where r′ = r′(X)
depends only on X. Let Γ′ = %−1(H◦K). Thus Γ/Γ′ is {free abelian of rank ≤ r′}-by-
finite.

By construction K fixes some point z ∈ B(x,R). Therefore we have %(Γ′) ≤ H◦K ≤
G◦Gz. We finally set Γ′′ = %−1(O). Thus [Γ′ : Γ′′] ≤ [G◦Gz : G◦Gz ∩ O] ≤ N be the
claim above.

Let Λ < Γ′′ be a finitely generated subgroup. Thus %(Λ) < O. Since Λ is finitely
generated and O is open, it follows that the conjugate Λn = hgnΛg−1

n h−1 is contained
in O for all sufficiently large n.

By Theorem 2.1, the radical RadLE(O) is compact and the group O/RadLE(O) is
an almost connected Lie group. Moreover, the number of its connected components
depends only on X. Notice moreover that Λn ∩ RadLE(O) is a finite normal subgroup
of Λn, thus contained in RadLE(Λn). By applying Proposition 5.11 to the quotient
Λn/Λn ∩ RadLE(O), we deduce that RadLE(Λn) is finite and that Λn/RadLE(Λn) is
{torsion-free polycyclic of rank ≤ r′′}-by-{finite of order ≤ r′′}, where r′′ depends only
on X. The same properties therefore hold for Λ, since it is conjugate to Λn.

Recalling that [Γ′ : Γ′′] ≤ N , we infer that for every finitely generated subgroup
Λ ≤ Γ′, the radical RadLE(Λ) is finitely generated and the quotient Λ/RadLE(Λ) is
{torsion-free polycyclic of rank ≤ r′′}-by-{finite of order ≤ Nr′′}. We are thus in a
position to apply Lemma 5.12 to Γ′, which ensures that Γ′ is {torsion-free soluble of
rank ≤ r′′}-by-finite.

Recall further that Γ/Γ′ is {free abelian of rank ≤ r′}-by-finite. Therefore Γ is
{torsion-free soluble of rank ≤ r}-by-finite, where r = r′ + r′′ depends only on X.
This concludes the proof. �
5.D. An easy comment on nilpotent groups. For the record, we indicate a vari-
ation on the Adams–Ballmann theorem [AB98] that is apparently not available in the
literature, giving a stronger conclusion in the special case of nilpotent groups. This easy
comment is not needed for the results of this paper.

Proposition 5.13. Let G be a nilpotent group acting by isometries on a proper CAT(0)
space X. Then either the G preserves a flat or it fixes a point ξ ∈ ∂X and annihilates
the Busemann character βξ.

This will be proved inductively, using the following relative statement for general
groups.

Proposition 5.14. Let G be a group acting by isometries on a proper CAT(0) space X.
Then either the centre Z (G) preserves a flat or G fixes a point ξ ∈ ∂X and annihilates
the Busemann character βξ.

Proof of Proposition 5.14. For any finite subset F ⊆ Z (G) and any ε > 0 we define

XF,ε =
{
x ∈ X : d(zx, x) ≤ |z|+ ε ∀ z ∈ F

}
,
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where |z| denotes the infimal displacement length of z. By centrality, this closed convex
subset of X is non-empty and G-invariant. Letting F grow and ε shrink, we obtain
a net of subsets, monotone decreasing with respect to inclusion. Assume first that
the intersection Y of all XF,ε is non-empty. Since all elements of Z (G) have constant
displacement on Y , there is a decomposition Y ∼= Rn × Y0 (with n ≥ 0) such that every
element of Z (G) acts by (possibly trivial) translations on Rn and trivially on Y0, see
Theorem II.6.15 in [BH99]. Thus Z (G) preserves indeed a flat.

We assume henceforth that the net XF,ε has empty intersection. This implies that
the distance from a base-point p to XF,ε tends to infinity. Denote by pF,ε the projection
of p to XF,ε. Any accumulation point ξ ∈ ∂X of the net pF,ε will correspond to a G-
invariant Busemann function since XF,ε is G-invariant, finishing the proof. (Compare
Proposition 2.1(2) in [AB98].) �

Proof of Proposition 5.13. We argue by induction on the nilpotency class of G; the base
case is when G is the trivial group. For the inductive step, we apply Proposition 5.14
and need only consider the case where Z (G) preserves a flat F in X. Upon passing to
a subflat of minimal dimension, we see that F is minimal as (non-empty) convex Z (G)-
invariant subset. The union U ⊆ X of all such flats splits canonically as U ∼= F ×C for
some proper CAT(0) space C endowed with a canonicalG/Z (G)-action, see Theorem 4.3
in [CM09b]. We now apply the induction hypothesis to this G/Z (G)-action on C. If
G/Z (G) preserves a flat E ⊆ C, then G preserves the flat F × E ⊆ X and we are
done. If on the other hand G/Z (G) fixes a point ξ ∈ ∂C ⊆ ∂X and annihilates the
corresponding Busemann character, then we are also done since Z (G) acts trivially on
C. �
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revue et augmentée, Actualités Sci. Indust., No. 1143. Hermann, Paris, 1960.

[Bou04] , Integration. II. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag,
Berlin, 2004, Translated from the 1963 and 1969 French originals by Sterling K. Berberian.

[BS87] Marc Burger and Viktor Schroeder, Amenable groups and stabilizers of measures on the
boundary of a Hadamard manifold, Math. Ann. 276 (1987), no. 3, 505–514.

[Cap09] Pierre-Emmanuel Caprace, Amenable groups and Hadamard spaces with a totally discon-
nected isometry group, Comment. Math. Helv. 84 (2009), 437–455.

[CCMT11] Yves Cornulier, Pierre-Emmanuel Caprace, Nicolas Monod, and Romain Tessera, Amenable
hyperbolic groups, Preprint, 2011.

[CFP96] James W. Cannon, William J. Floyd, and Walter R. Parry, Introductory notes on Richard
Thompson’s groups, Enseign. Math. (2) 42 (1996), no. 3-4, 215–256.



32 P.-E. CAPRACE AND N. MONOD

[Cha50] Claude Chabauty, Limite d’ensembles et géométrie des nombres, Bull. Soc. Math. France 78
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[vD31] David van Dantzig, Studien over topologische algebra (proefschrift), Ph.D. thesis, Groningen,

1931.
[Weh73] Bertram A. F. Wehrfritz, Infinite linear groups. An account of the group-theoretic properties

of infinite groups of matrices, Springer-Verlag, New York, 1973, Ergebnisse der Matematik
und ihrer Grenzgebiete, Band 76.

[Yam53] Hidehiko Yamabe, A generalization of a theorem of Gleason, Ann. of Math. (2) 58 (1953),
351–365.

[Zas38] Hans Zassenhaus, Beweis eines Satzes über diskrete Gruppen., Abh. Math. Semin. Hansische
Univ. 12 (1938), 289–312.

[Zel91] Efim I. Zelmanov, On the restricted Burnside problem, Proceedings of the International
Congress of Mathematicians, Vol. I, II (Kyoto, 1990) (Tokyo), Math. Soc. Japan, 1991,
pp. 395–402.

UCL – Math, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
E-mail address: pe.caprace@uclouvain.be

EPFL, 1015 Lausanne, Switzerland
E-mail address: nicolas.monod@epfl.ch


