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Abstract. The spectral gap, i.e. the distance between the two lowest eigen-
values for Laplace operators on metric graphs is studied. A universal lower

estimate for the spectral gap is proven and it is shown that it is attained if
the graph is formed by just one interval. Uniqueness of the minimizer allows
to prove a geometric version of Ambartsumian theorem derived originally for
Schrödinger operators.

1. Introduction

Quantum graphs - coupled differential equations on metric graphs - proved to
be an important class of differential operators which can be used to model a wide
variety of physical phenomena from wave propagation in microwave cavities to elec-
tron transmission in nano systems. Such studies motivated by possible applications
intensified in the 80-ies [1, 5, 14, 16]. It appeared that quantum graphs is an
ideal model for chaotic phenomena [19, 20, 26], their properties are connected with
nodal domains for eigenfunctions [2, 4]. More about how to define general quantum
graphs and description of their spectral and transmission properties can be found
in [18, 25] and recent surveys [3, 21, 22].

Differential equations on metric graphs are also interesting from pure mathemat-
ical point of view exhibiting unusual spectral phenomena [6, 15, 23, 24]. Standard
intuition does not always work and conventional methods lead sometimes to un-
expected results. This may be explained by the fact that quantum graphs possess
properties of both ordinary and partial differential equations. Current article is a
nice illustration to the last statement. More precisely, we study the spectral gap -
the difference between the two lowest eigenvalues for the Laplacian on a finite com-
pact metric graph. The spectral gap is an important parameter describing stability
of the corresponding dynamical system (described by a non-stationary equation).
For discrete graphs the spectral gap is proven to be an important characterization
of graph’s connectivity. The spectral gap for quantum graphs has been recently
studied by P.Exner and M. Jex [12].

The main result of the paper is the derivation of a universal lower estimate for
the spectral gap. In this approach the graph Γ is compared to the ”ball” in R -
the interval of the same total length as Γ. Surprisingly such comparison gives not
the upper but the lower estimate for the spectral gap. It is natural to ask the
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question whether the graph minimizing the spectral gap is unique, provided the
total length is fixed. Answering this question we prove a geometric analog of the
classical Ambartsumian theorem. More precisely, we prove that essentially only the
graph formed by one interval gives the lowest possible spectral gap.

2. Rayleigh estimate

Let Γ be a compact connected metric graph formed by a finite number of com-
pact edges En = [x2n−1, x2n], n = 1, 2, . . . , N. Let us denote by L(Γ) the cor-
responding free Laplace operator defined on W 2

2 -functions u satisfying standard
matching/boundary conditions at every vertex:

(1)

{
u is continuous,
the sum of normal derivatives is equal to zero.

The operator L(Γ) is self-adjoint and is completely determined by the metric graph
Γ. One may without loss of generality assume that no vertex of valency 2 is present.
Really standard matching conditions for such vertices imply that the function and
its first derivative (NB! not the normal derivative) are continuous along the vertex.
Every such vertex can be removed and the attaching edges can be substituted by
one edge with the length equal to the sum of lengths in the two original edges. The
free Laplace operators on such graphs are unitary equivalent and there is no reason
to distinguish the corresponding graphs.

The spectrum of the free Laplacian is nonnegative and consists of an infinite
sequence of eigenvalues λj of finite multiplicity tending to +∞. The lowest eigen-
value (the ground state) is zero λ0 = 0 and the corresponding eigenfunction is just
a constant function on Γ. The multiplicity of λ0 is one, since the graph is connected.
Our main interest here is the distance between the first two eigenvalues to be called
the spectral gap. Since λ0 = 0 the spectral gap coincides with λ1.

The classical Rayleigh theorem states that the maximum for the gap between
the lowest two eigenvalues of the Neumann Laplacian in a domain of fixed area is
attained if the domain is a circle. One might expect that for differential operators on
graphs the spectral gap attains its maximum for the graph being just one interval,
provided the total length is fixed. On the contrary it appears that the Laplacian
on a single interval can be used to estimate the spectral gap not from above, but
from below. In other words the spectral gap among all graphs of the same total
length is minimal for the single interval. This fact shows another one time, that
differential operators on graphs possess properties of both ordinary and partial
differential operators.

The following theorem provides a universal lower estimate for the spectral gap
in contrast to Rayleigh theorem giving an upper estimate.

Theorem 1. Let Γ be a connected finite metric graph with the total length L(Γ)
and L(Γ) - the corresponding free Laplace operator defined on the domain of func-
tions satisfying standard matching conditions at the vertices. Consider as well the
graph ∆L(Γ) formed by one interval of length L(Γ) and the corresponding Neumann
Laplacian L(∆L(Γ)). The spectral gap for the Laplacian on Γ can be estimated as
follows

(2) λ1(Γ) ≥ λ1(∆L(Γ)) =

(
π

L(Γ)

)2

.
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Proof. The first nontrivial eigenvalue of L(Γ) can be calculated by minimizing the
Rayleigh quotient

(3) λ1(Γ) = min
u⊥1

∫
Γ

|u′(x)|2dx∫
Γ

|u(x)|2dx ,

where the minimum is taken over all functions u belonging to the Sobolev space
W 1

2 on every edge and continuous on the whole Γ. The first eigenfunction ψ1 is the
minimizer of (3) and therefore satisfies

(4) λ1(Γ) =

∫
Γ

|ψ′
1(x)|2dx∫

Γ
|ψ1(x)|2dx

.

Consider the graph Γ∗ - a certain “double cover” of Γ - obtained from Γ by
doubling each edge. The new edges connect the same vertices as before, so that the
set of vertices is preserved. The corresponding valencies are just doubled as well.

Any function u from L2(Γ) can be lifted up to a function u∗ ∈ L2(Γ
∗) in a

symmetric way by assigning it the same values on any new pair of edges as on the
original edge in Γ. More precisely, consider any edge En ∈ Γ and let us denote
by E′

n and E′′
n the corresponding edge pair in Γ∗. It is natural to use the same

parametrization of the intervals En, E′
n, and E′′

n.Then we have

u∗|E′
n

= u∗|E′′
n

= u|En .

The function ψ∗
1 obtained from ψ1 in this way obviously satisfies

λ1(Γ) =

∫
Γ∗ |ψ∗

1
′(x)|2dx∫

Γ∗ |ψ∗
1(x)|2dx ,

where the numerator and denominator gain factor 2 compared to (4).
Every vertex in Γ∗ has even valency and therefore there exists a closed (Eulerian)

path P on Γ∗ coming along every edge in Γ∗ precisely one time [10, 17]. The path
goes through certain vertices several times, but we identify it with the loop S2L(Γ)

of length 2L(Γ). The loop is a metric graph and we consider the corresponding
Laplace operator L(S2L(Γ)). The ground state for L(S2L(Γ)) is again λ0 = 0. Its first
nontrivial eigenvalue can be calculated by minimizing the corresponding Rayleigh
quotient. The set of trial functions consists of W 1

2 (S2L(Γ)) functions having mean
value zero. The set of trial functions can be increased by considering all continuous
piece-wise W 1

2 functions. The corresponding minimizer will be the same as before,
since every minimizer will have equal limits of the first derivative on different sides
of possible points of discontinuity.

The function ψ∗
1 defined originally on the graph Γ∗ can be considered as a func-

tion on the loop S2L(Γ). It is a continuous piece-wise W 1
2 function with zero mean

value and therefore gives an upper estimate for the Laplacian eigenvalue on the
loop

λ1(S2L) ≤
∫

S2L
|ψ∗

1
′(x)|2dx∫

S2L
|ψ∗

1(x)|2dx = λ1(Γ).

We obtain the result by noticing that

λ1(S2L) = λ1(∆L).

�
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In other words we have proven that the minimum of the spectral gap for metric
graphs of fixed total length is attained when the graph is formed by just one interval.

Obtained estimate can be improved if the original graph Γ possess special prop-
erties. For example if we assume that all vertices are balanced, i.e. have even
valency, then there is no need to consider the “double covering” and Euler theorem
can be applied to the graph Γ directly. We would like to note that balanced ver-
tices were considered recently by P.Exner in connection with momentum operators
on graphs [11]. It appeared that the momentum operator can be introduced on a
graph Γ if and only if it is balanced. Another recent example where balanced ver-
tices play an important role concerns asymptotics of resonances on graphs having
several infinite leads attached to a compact part. It appears that the asymptotics
is of Weyl-type if and only if every external vertex (i.e. a vertex to which external
leads are attached) is not balanced [13, 8, 9]. Our result shows that if we know that
the graph is balanced then the lower estimate for the spectral gap can be improved
by factor 4.

Theorem 2. Let all assumptions of Theorem 1 be satisfied. Assume in addition
that all vertices in Γ have even valencies. Then the spectral gap for the Laplacian
on Γ can be estimated as follows

(5) λ1(Γ) ≥ λ1(∆L(Γ)/2) =

(
2π

L(Γ)

)2

.

Proof. The proof is almost identical to the one of Theorem 1. Let ψ1 be the
eigenfunction corresponding to the eigenvalue λ1(Γ). Since the vertices in Γ are
balanced (the valencies are even) there exists a closed (Eulerian) path coming along
each edge in Γ precisely once. The length of any such path is L(Γ) and the function
ψ1 can be identified with a unique function on SL(Γ). The function ψ1 in L2(SL(Γ)) is

a continuous pice-wise W 1
2 function and can be used to estimate the first eigenvalue

for the corresponding Laplacian

(6) λ1(SL) ≤
∫

SL
|ψ1

′(x)|2dx∫
SL

|ψ1(x)|2dx
= λ1(Γ).

Taking into account that λ1(∆L/2) = λ1(SL) we get the estimate (5). �

The second estimate shows that for balanced graphs the spectral gap is minimal
if the graph is a loop, provided the total length is preserved.

Summing up our results we conclude that the minimum of the spectral gap
is attained for graphs having minimal branching under allowed conditions. If no
condition on the valency of vertices is imposed, then such graph is an interval. If
one requires that the vertices are balanced, then the minimizer is a loop.

3. Geometric version of Ambartsumian theorem

The classical Ambartsumian theorem states that Schrödinger operator on a fi-
nite interval has the same spectrum as the Neumann Laplacian if and only if the
potential is identically equal to zero. This theorem has been generalized for the
case of graphs in [7], where the spectrum of the Schrödinger and Laplace operators
on the same metric graph were compared. Our goal here is to compare the spectra
of Laplacians on two different graphs having the same total length. It appears that
the spectral gap for L(Γ) coincides with the spectral gap for Neumann Laplacian on
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the single interval of length L(Γ) if an only if Γ itself is an interval. Remember that
we agreed to remove all vertices of valency 2 and therefore a series of chain-coupled
intervals is identified with one interval of length equal to the sum of lengths in the
series. It is interesting to note that the theorem does not require that all eigenvalues
coincide (like in the classical Ambartsumian theorem), but just the first two (the
ground state and λ1).

Theorem 3. Let L(Γ) be the free Laplace operator on a connected finite compact
metric graph Γ of total length L(Γ). Assume that the first (nonzero) eigenvalue of
L(Γ) coincides with the first (nonzero) eigenvalue of the Laplacian on the interval
of length L(Γ)

(7) λ1(Γ) = λ1(∆L(Γ)),

then the graph Γ coincides with the interval ∆L(Γ).

Proof. Consider the functions ψ1 and ψ∗
1 introduced in the proof of Theorem 1.

These functions are defined on Γ and S2L respectively. Since λ1(Γ) = λ1(∆L(Γ))
the function ψ∗

1 itself is an eigenfunction for the Laplacian on the loop. Choosing
proper parameterization of the loop this function just coincides with cos π

Lx. The
function ψ1 can be reconstructed from ψ∗

1 by gluing its values on intervals from the
same pair. But the values of ψ∗

1 cover the interval [−1, 1] twice, implying that there
exists just one way to glue points on the loop together to get Γ back. It follows
that Γ is essentially just one interval. It might happen that Γ is formally given
by a series of intervals, but then there exists just one way to glue these intervals
together keeping ψ continuous and having ψ′ = 0 at the end points. Since we
agreed to remove vertices of valency 2 the unique graph Γ is the interval of length
L(Γ). �

The last theorem implies that if the spectral gap for L(Γ) coincides with the
spectral gap for the single interval of the same total length, then all other eigenvalues
coincide as well.

It is interesting to note that this theorem cannot be generalized by using higher
eigenvalues instead of the spectral gap, i.e.. the first eigenvalue. The second eigen-
value λ2 for Laplacians on the interval ∆L and on the loop SL coincide (all nonzero
eigenvalues on the loop are double degenerate). The same holds for all even eigen-
values. Consider the graph Γ1 shown in Fig. 1.
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Figure 1. Graph Γ1: a loop with two intervals attached.

We assume that the length of the loop is 2/3L and the lengths of the outgrowths
are 1/6L. The eigenvalues of the Laplacian on Γ1 are

λ0 = 0, λ1 = (
2π

L )2, λ2 = λ3 = (
3π

L )2, . . .

We see that the third eigenvalue coincides with the third eigenvalue for the interval
of the same length.

The theorem cannot be generalized directly to include balanced graphs. The
graph Γ2 shown in Fig. 2 has the same spectral gap as the loop graph of the same
total length, also the first eigenvalue is not degenerate.

Figure 1. Graph Γ2: two loops attached.
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[5] M.Büttiker, Y. Imry, and M.Ya.Azbel, Quantum oscillations in one-dimensional normal-

metal rings, Phys. Rev A, 30 (1984), no. 4, 1982–1989.
[6] Y.Colin de Verdière, Spectres de graphes, Société Mathématiques de France, 1998.
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[13] P. Exner and J. Lipovský, Non-Weyl resonance asymptotics for quantum graphs in a magnetic

field, Phys. Lett. A 375 (2011), no. 4, 805807.
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