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EXISTENCE OF EVOLUTIONARY VARIATIONAL SOLUTIONS VIA THE
CALCULUS OF VARIATIONS

VERENA BÖGELEIN, FRANK DUZAAR, AND PAOLO MARCELLINI

ABSTRACT. In this paper we introduce a purely variational approach to time dependent
problems, yielding the existence of global parabolic minimizers, that is

∫ T

0

∫

Ω

[
u · ∂tϕ + f(x,Du)

]
dxdt ≤

∫ T

0

∫

Ω
f(x,Du + Dϕ) dxdt,

whenever T > 0 and ϕ ∈ C∞
0 (Ω × (0, T ),RN ). For the integrand f : Ω × RNn →

[0,∞] we merely assume convexity with respect to the gradient variable and coercivity.
These evolutionary variational solutions are obtained as limits of maps depending on space
and time minimizing certain convex variational functionals. In the simplest situation, with
some growth conditions on f , the method provides the existence of global weak solutions
to Cauchy-Dirichlet problems of parabolic systems of the type

∂tu− divDξf(x,Du) = 0 in Ω× (0,∞).

1. INTRODUCTION

In this paper we are concerned with the existence for evolutionary problems possessing
a variational structure, in the sense that we are aiming to construct solutions which inherit
a certain minimizing property. The advantage of these parabolic minimizers or variational
solutions stems from the fact that they might exist even in situations where the associated
parabolic system makes no sense. Here we should recall the stationary case, where it is
possible to establish the existence of minimizers by the Direct Methods of the Calculus of
Variations in fairly general situations, whereas additional stronger assumptions are needed
to guarantee that the minimizers fulfill the Euler-Lagrange system. It is exactly this point
we address in this paper: we construct variational solutions (parabolic minimizers) to evo-
lutionary problems under general assumptions on the integrand, where a priori it is not
clear at all that these minimizers also solve the associated evolutionary system.

1.1. The main result. To explain our ideas and results in more detail, we start for simplic-
ity with a variational integrand f : Ω×RNn → [0,∞], a given inhomogeneity h : Ω→ RN
and an initial datum uo : Ω → RN . Here, Ω denotes a bounded domain in Rn with n ≥ 2
and Ω∞ := Ω × (0,∞) stands for the infinite space-time cylinder over Ω. We note that
N ≥ 1, so that the problem could be vector-valued. For points in Rn+1 we usually write
z = (x, t). Differentiation with respect to the spatial variable x will be denoted by Du,
while ∂tu stands for the differentiation with respect to time. Associated to data (f, h, uo),
the Cauchy-Dirichlet problem takes the form

(1.1)

{
∂tu− divDξf(x,Du) = h(x) in Ω∞,

u = uo on ∂PΩ∞,

where u : Ω∞ ⊂ Rn+1 → RN and ∂PΩ∞ := [∂Ω × (0,∞)] ∪ [Ω × {0}] denotes the
parabolic boundary of Ω∞. In the caseN > 1 we are dealing with parabolic systems. More
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generally, we consider a Carathéodory-function f : Ω × RN × RNn → R := R ∪ {+∞}
fulfilling the following convexity and coercivity assumptions:

(1.2)

{
RN × RNn 3 (u, ξ) 7→ f(x, u, ξ) is convex for a.e. x ∈ Ω;

f(x, u, ξ) ≥ ν|ξ|p − g(x)(1 + |u|), ∀(x, u, ξ) ∈ Ω× RN × RNn,

for some ν > 0 and p > 1. Moreover, we assume g ∈ Lp′(Ω), where p′ = p
p−1 denotes

the Hölder conjugate of p. Note that the convexity assumption on the integrand f with
respect to u already implies a linear growth from below. For the initial and boundary
datum uo ∈W 1,p(Ω,RN ) we assume that

(1.3) uo ∈ L2(Ω,RN ) and
∫

Ω

f(x, uo, Duo) dx <∞.

Corresponding to the integrand f and the initial datum uo we can state on a purely formal
level the following Cauchy-Dirichlet problem on Ω∞:

(1.4)

{
∂tu− divDξf(x, u,Du) = −Duf(x, u,Du) in Ω∞,

u = uo on ∂PΩ∞.

In the following definition we describe the concept of variational solutions to Cauchy-
Dirichlet problems, as for instance those considered in (1.4). Here we follow an idea by
Lichnewsky and Temam [17], which was first used in the context of the evolutionary para-
metric minimal surface equation. Variational solutions are sometimes also called parabolic
minimizers. We will come back to the slight differences in possible definitions later, see § 3.
At this point we only give the following definition.

Definition 1.1 (Variational Solutions). Suppose that f : Ω × RN × RNn → R is a vari-
ational integrand satisfying the convexity and coercivity assumption (1.2). Moreover, as-
sume that the Cauchy-Dirichlet datum uo fulfills (1.3). We identify a measurable map
u : Ω∞ → RN in the class

u ∈ Lp
(
0, T ;W 1,p

uo (Ω,RN )
)
∩ C0

(
[0, T ];L2(Ω,RN )

)
, for any T > 0

as a variational solution associated to the Cauchy-Dirichlet problem (1.1) if and only if the
variational inequality

∫ T

0

∫

Ω

f(x, u,Du) dxdt ≤
∫ T

0

∫

Ω

[
∂tv · (v − u) + f(x, v,Dv)

]
dxdt

+ 1
2‖v(·, 0)− uo‖2L2(Ω) − 1

2‖(v − u)(·, T )‖2L2(Ω)(1.5)

holds true, whenever T > 0 and v ∈ Lp(0, T ;W 1,p
uo (Ω,RN )) with ∂tv ∈ L2(ΩT ,RN ). 2

Here and in the following we use the shorthand notation

W 1,p
uo (Ω,RN ) := uo +W 1,p

0 (Ω,RN ).

At this stage we should mention that we could have started in the definition of variational
solutions by a map in L1(0, T ;W 1,1(Ω,RN )) ∩ C0([0, T ], L2(Ω,RN )) for any T > 0.
This can be inferred by testing the minimality condition (1.5) with the admissible com-
parison map v(·, t) ≡ uo. This yields that the left-hand side of (1.5) is finite, and the
growth condition from below implies an Lp−W 1,p-bound. Moreover, from this bound one
also obtains that the initial condition u(·, 0) = uo holds true in the usual L2-sense; cf.
Lemma 2.1 for the details and the proof. The main result of the paper is the following
existence result.

Theorem 1.2. Suppose that f : Ω×RN ×RNn → R is a variational integrand satisfying
the convexity and coercivity assumptions (1.2) and that the Cauchy-Dirichlet datum uo
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fulfills the requirements of (1.3). Then, there exists a variational solution u in the sense of
Definition 1.1. Moreover, u satisfies

∂tu ∈ L2
(
Ω∞,RN

)
and u ∈ C0, 12

(
[0, T ];L2(Ω,RN )

)
∀T > 0

and the time derivative ∂tu fulfills the quantitative bound

(1.6)
∫ ∞

0

∫

Ω

|∂tu|2 dxdt ≤
∫

Ω

f(x, uo, Duo) dx.

Further, for any 0 ≤ t1 < t2 <∞ we have the energy estimate

(1.7)
1

t2 − t1

∫ t2

t1

∫

Ω

f(x, u,Du) dxdt ≤ 2e

∫

Ω

f(x, uo, Duo) dx.

Finally, if the integrand f is strictly convex, then the variational solution is unique.

1.2. Examples. The assumptions of our theorem cover a large variety of interesting vari-
ational functionals already considered in the literature. Amongst them there are variational
integrands fulfilling a standard growth condition from below and above, functionals of non-
standard p, q growth, functionals with exponential growth and Orlicz-type functionals:

f1(x,Du) := α(x)|Du|p + β(x)|Du|q

f2(x,Du) := α1(x)|ux1 |p1 + · · ·+ αn(x)|uxn |pn

f3(Du) := |Du|p log(1 + |Du|)
f4(Du) := exp(|Du|r).

Here, 1 < p < q, 1 < p1 < · · · < pn and r ≥ 1 are arbitrary integrability exponents, and
the functions α, β : Ω→ [0,∞) are non-negative and bounded with α(x) + β(x) ≥ ν > 0
a.e. on Ω, whereas αi(x) ≥ ν > 0 for i = 1, . . . , n and a.e. x ∈ Ω. Also functionals of
splitting type, such as

f(x, u,Du) := f(x,Du) + g(x, u)

are covered, where g : Rn → R is merely convex with respect to u. For example, a lower
order term of the type g(x, u) := |u|p with an arbitrary p ≥ 1 or g(x, u) := −h(x) · u is
included. In the peculiar case of the variational functional f(x, u,Du) := 1

p |Du|p+ λ
q |u|q

with λ ∈ R+, our result guarantees the existence of a variational solution. In a second
step it can be shown that the variational solution is a global weak solution to the associated
Cauchy-Dirichlet problem

{
∂tu−∆pu = −λ|u|q−2u in Ω∞,

u = uo on ∂PΩ∞.

We note that this result holds true without imposing any constraint on the exponent q of
the non-linearity, and therefore covers classes of parabolic equations with super-critical
nonlinearity.

1.3. Passing to the parabolic system. The passage from the minimality condition (1.5)
to the associated parabolic system is possible under certain additional assumptions on the
integrand f . For simplicity we shall restrict ourselves to a classical case, where the inte-
grand f : Ω×RN ×RNn → R is a Carathéodory-function, satisfying (1.2) and in addition
the following growth condition from above

(1.8) f(x, u, ξ) ≤ L
(
|ξ|p + |u|p +G(x)

)
,

where L ≥ ν and G ∈ Lp′(Ω). By its convexity f is an almost everywhere differentiable,
locally Lipschitz function with respect to (u, ξ). Thus, the compositions Dξf(x, u,Du)
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and Duf(x, u,Du) are well defined. Together with assumption (1.8) it is easy to show the
following growth conditions

|Dξf(x, u, ξ)|+ |Duf(x, u, ξ)| ≤ c(p, L)
[
|ξ|p−1 + |u|p−1 + |g(x)|+ |G(x)|+ 1

]
,

whenever (x, u, ξ) ∈ Ω × RN × RNn, cf. [20, Lemma 2.1]. Moreover, if f satisfies the
growth condition (1.8), then one can show that the time derivative ∂tu of the variational
solution belongs to the distributional space Lp

′
(0, T ;W−1,p′(Ω,RN )) for any T > 0.

Here, p′ = p
p−1 denotes again the Hölder conjugate of p. For the particular solution

constructed in Theorem 1.2 such an argumentation is unnecessary, since we even have
∂tu ∈ L2(ΩT ,RN ). In the minimality condition (1.5) we use the testing function v ≡
u+ sϕ, with 0 < s < 1 and ϕ ∈ C∞0 (Ω∞,RN ). The resulting inequality is divided by s.
Afterwards, we let s ↓ 0, which amounts in taking the one-sided derivative of the mapping

[0, 1) 3 s 7→
∫ ∞

0

∫

Ω

f(x, u+ sϕ,Du+ sDϕ) dxdt.

By the fact that ∂tu ∈ Lp
′
(0, T ;W 1,p′(Ω,RN )), respectively ∂tu ∈ L2(ΩT ,RN ) the

result is that∫ ∞

0

∫

Ω

[
∂tu · ϕ+Dξf(x, u,Du) ·Dϕ+Duf(x, u,Du) · ϕ

]
dxdt ≤ 0

holds true for any ϕ ∈ C∞0 (Ω∞,RN ). Here, we can replace ϕ by −ϕ to obtain the
reversed inequality, so that the variational solution solves the associated parabolic system
and therefore is a global solution to the Cauchy-Dirichlet problem (1.4). Moreover, since
also u = uo on ∂PΩ∞, the variational solution is a global weak solution to the associated
Cauchy-Dirichlet problem.

As an application for variational integrands f(x, ξ) − h(x) · u with a principal part f
satisfying a standard growth condition of the type

ν|ξ|p ≤ f(x, ξ) ≤ L(1 + |ξ|p)
for some p > 1 and structural constants 0 < ν ≤ L, we have that variational solutions are
global weak solutions to the Cauchy-Dirichlet problem (1.1).

More generally, the results of [4] allow the derivation of the parabolic system, if the
integrand f is of class C2 and furthermore satisfies a non-standard growth condition of the
type

ν|ξ|p ≤ f(ξ) ≤ L(1 + |ξ|q)
whenever 2 ≤ p ≤ q < p+ min{1, 4

n}. At this stage we should mention that it is an inter-
esting problem to establish – maybe under further structure conditions on the integrand f –
that a variational solution also solves the associated parabolic system. For example in the
elliptic case it is known that minimizers to the integrand f(ξ) = exp(|ξ|p) have a locally
bounded gradient in the interior of Ω, cf. [21, 22]. Therefore, it could be of interest to
establish the same result for parabolic systems, maybe more general for integrands of the
type f(ξ) = φ(|ξ|), where φ is not necessarily a ∆2-function. We will take this issue up in
a forthcoming paper. At this stage we should mention that in the scalar case for parabolic
equations with non-standard p, q growth without variational structure the existence prob-
lem has been treated in [3] by use of a completely different approach; cf. [7] for a related
existence result.

1.4. The method of the proof and some comments on the history of the problem. As
mentioned already before, our method will be of purely variational nature, and goes back
to a conjecture of De Giorgi [8, 9] concerning the existence of global weak solutions to
the Cauchy problem for non-linear hyperbolic wave equations on Rn. More precisely, De
Giorgi suggested to construct such solutions as limits of minimizers of convex variational
integrals on Rn × (0,∞). The proposed approach can be viewed as a link between the
powerful methods of the Classical Calculus of Variations and the theory of Non-linear
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Hyperbolic Wave Equations. In [26] Serra & Tilli solved the De Giorgi conjecture (up to
subsequences) for the Laplacian as the principal part in an affirmative way; see also [28]
for the construction of weak solutions on finite time intervals.

In the present paper we use a similar approach, in order to treat general non-linear par-
abolic evolutionary problems related to variational integrands f : Ω × RN × RNn → R.
Under the weak assumptions on f from (1.2) the Classical Calculus of Variations ensures
the existence of minimizers to the Dirichlet problem associated to the variational func-
tional, so that it is natural to develop a related theory for evolutionary Cauchy-Dirichlet
problems via a modification of De Giorgi’s ingenious idea. A few words concerning the
method are in order. For a given time independent datum uo : Ω → RN we consider
mappings u : Ω∞ → RN satisfying the Cauchy-Dirichlet boundary condition u = uo on
∂PΩ∞. For such mappings (of course we have to impose certain integrability conditions)
we consider for given ε ∈ (0, 1] the following convex variational integrals:

Fε(v) :=

∫ ∞

0

∫

Ω

e−
t
ε

[
1
2 |∂tv|2 + 1

εf(x, u,Du)
]
dxdt.

The growth assumption from below and the convexity of f allow the application of standard
methods from the Classical Calculus of Variations ensuring the existence of minimizers uε
in certain classes of mappings. Essentially, these classes are defined by requiring that
v ∈ W 1,1(Ω × (0, T );RN ) for any time T > 0, v = uo on ∂PΩ∞ in the sense of traces,
and finally that Fε is coercive.

To explain why the sequence uε is expected to converge to a solution of the Cauchy-
Dirichlet problem

{
∂tu− divDξf(x, u,Du) = −Duf(x, u,Du) in Ω∞,

u = uo on ∂PΩ∞,

one computes the Euler-Lagrange system of the functional Fε in its classical form. From
the classical form one easily deduces that the minimizers uε formally solve

−ε ∂ttuε + ∂tuε − divDξf(x, uε, Duε) = −Duf(x, uε, Duε),

and moreover fulfill the Cauchy-Dirichlet boundary condition uε = uo on ∂PΩ∞. There-
fore, it seems to be natural to consider the limit ε ↓ 0. Roughly speaking, in the wave-type
systems above, the term ε∂2

t uε should disappear in the limit ε ↓ 0. Formally, this would
lead to a solution u of the Cauchy-Dirichlet problem, provided we could establish the
convergence uε → u in an appropriate sense. At this stage we should mention that the
argument is purely heuristical. The assumptions on the integrand f are so weak, that in
general we cannot expect that minimizers satisfy the Euler-Lagrange system. Furthermore,
even for the functional f(ξ) = 1

p |ξ|p, with p 6= 2, we would not be allowed to pass to the
limit ε ↓ 0 in the Euler-Lagrange system, since this would require the a.e. convergence
Duε → Du.

The main idea to overcome this difficulty, is to stay on the level of minimizers, i.e. not
to pass to the Euler-Lagrange system. This has to be understood in the following sense:
The mappings uε minimize a variational functionalFε. Therefore, a limit u as ε ↓ 0 should
also inherit a certain minimizing property. We note that this is a delicate point even if the
mappings uε would minimize the same functional. In our case, we are using a sequence
of convex functionals Fε to obtain solutions of an evolutionary problem. Though, the
interplay between the Calculus of Variations and the Parabolic Theory must stay on the
level of minimization. The link between the convex functionals Fε and the evolutionary
problem, is the notion of evolutionary variational solutions as in Definition 1.1, going back
to the paper of Lichnewsky & Temam [17]. It is exactly the notion of solution which allows
us to argue on the level of functionals and which avoids the use of the Euler-Lagrange
system associated to Fε.
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In the present paper we follow this path, by first deriving a certain a priori bound for
the energy and the time derivative of the sequence. This comes out by comparing the map-
pings with uo, and by using the inner variation with respect to time. The latter was one
of the main ingredients of the approach by Sera & Tilli [26]. In our case, the inner varia-
tion with respect to time leads to a conservation law, which finally yields suitable energy
bounds, and moreover the bound for the time derivative, both uniformly with respect to ε.
This allows the passage to a weakly converging subsequence. The considered notion of
weak convergence is strong enough, to have the lower semi-continuity of the variational
functional associated to the integrand f . At this stage, a direct comparison argument in the
functionals Fε together with the convexity allows the passage to the limit, establishing that
the weak limit is a variational solution in the sense of Definition 1.1.

The main advantage of our strategy is, that only rather weak assumptions on the inte-
grand f must be imposed, to ensure the existence of a variational solution. It is worth to
note that the indicated method works for general convex variational functionals of higher
order. However, in this paper we only consider first order integrands as in (1.2) to keep the
presentation as simple as possible. We will take this up in subsequent work.

Finally, we should mention that the above described approach has been used before in
[1, 2, 23, 24, 27] on finite space-time cylinders ΩT = Ω× (0, T ), to construct solutions of
certain parabolic problems. The functionals Fε are termed Weighted Energy Dissipation
Functional. In the above mentioned papers the corresponding Euler-Lagrange equation,
leading to an elliptic regularization of the original evolutionary problem, is utilized in
order to pass to the limit ε ↓ 0. Therefore, the applications are mostly limited to special
variational functionals of standard growth and the overall set up has a more abstract point
of view (Hilbert spaces, methods from Convex Analysis such as sub-differentials, abstract
theory to nonlinear evolutionary PDE’s).

Acknowledgement. This work is partially supported by the Institute Mittag-Leffler (Djur-
sholm, Sweden), that the three authors were visiting in Autumn 2013. We would like to
thank the staff at the Institute for their kind hospitality.

2. PRELIMINARIES AND NOTATIONS

2.1. Notations. The spaces Lp(Ω,RN ), W 1,p(Ω,RN ) and W 1,p
0 (Ω,RN ) denote the

usual Lebesgue and Sobolev spaces, and we write W 1,p
uo (Ω,RN ) := uo + W 1,p

0 (Ω,RN ).
Moreover, by ΩT , with T ∈ (0,∞) we denote the space-time cylinder Ω × (0, T ); when
T =∞ we write Ω∞ for Ω× (0,∞).

2.2. The initial condition. As mentioned in the introduction, variational solutions in the
sense of Definition 1.5 fulfill the initial condition u(·, 0) = uo in the usual L2-sense. This
follows from the fact that the difference ‖u(·, T ) − uo‖2L2 grows at most linearly with
respect to T > 0, cf. estimate (2.1) below.

Lemma 2.1. Let f be a variational integrand satisfying the convexity and coercivity as-
sumption (1.2). Then any variational solution u in the sense of Definition (1.1) fulfills the
initial condition in the L2-sense, i.e. we have

lim
t↓0
‖u(·, t)− uo‖2L2(Ω) = 0.

Proof. First of all, testing the minimality condition (1.5) with the admissible comparison
map v(·, t) ≡ uo, t > 0, we we find that
∫ T

0

∫

Ω

f(x, u,Du) dxdt+ 1
2‖u(·, T )− uo‖2L2(Ω) ≤ T

∫

Ω

f(x, uo, Duo) dx <∞
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holds true for any T > 0. Next, we use the growth assumption (1.2) to estimate the
variational integral from below. This implies that

ν

∫ T

0

∫

Ω

|Du|p dxdt−
∫ T

0

∫

Ω

g(1 + |u|) dxdt ≤ T
∫

Ω

f(x, uo, Duo) dx

holds true. Now, we use in turn Young’s and Poincaré’s inequality in order to bound the
negative term in the preceding inequality. This procedure leads to the inequality

∫ T

0

∫

Ω

g(1 + |u|) dxdt

≤ ν

2

∫ T

0

∫

Ω

|Du|p dxdt+ c T

∫

Ω

(
|uo|p + |Duo|p + |g|p′ + 1

)
dx

for a constant c depending only on ν, p and diam(Ω). Inserting this above we obtain that
∫ T

0

∫

Ω

|Du|p dxdt+ ‖u(·, T )− uo‖2L2(Ω)

≤ c T
∫

Ω

[
f(x, uo, Duo) + |uo|p + |Duo|p + |g|p′ + 1

]
dx ,(2.1)

for any T > 0. Here, we discard the energy term in the left-hand side and then let T ↓ 0 in
the right-hand side. This proves that u satisfies the initial boundary condition u(·, 0) = uo
in the L2-sense as claimed. �

2.3. Mollification in time. Due to their lack of regularity with respect to time, the varia-
tional solutions in the sense of Definition 1.1 are in general not admissible as comparison
maps in (1.5). However, if for example the integrand f has p-growth from above, i.e.

f(x, u, ξ) ≤ L(|ξ|p + |u|p + 1)

holds true, then one can show that the time derivative ∂tu of the variational solution be-
longs to the distributional spaceLp

′
(0, T ;W−1,p′(Ω,RN )) for any T > 0. Here, p′ = p

p−1

denotes again the Hölder conjugate of p. However, in the general case, where we only
assume p-growth from below, this is not clear and therefore we shall use a certain mollifi-
cation in time. The precise construction of the regularization is as follows: For T > 0 and
v ∈ L1(ΩT ,RN ), vo ∈ L1(Ω,RN ) and h ∈ (0, T ] we define

(2.2) [v]h(·, t) := e−
t
h vo + 1

h

∫ t

0

e
s−t
h v(·, s) ds,

for t ∈ [0, T ]. One of the basic features of this mollification is, that [v]h (formally) solves
the ordinary differential equation

∂t[v]h = − 1
h

(
[v]h − v

)

with initial condition [v]h(·, 0) = vo. The basic properties of the mollification [ · ]h are
provided in the following lemma, cf. [14, Lemma 2.2], or [4, Appendix B] for the proofs
of the particular statements.

Lemma 2.2. Suppose that v ∈ L1(ΩT ,RN ) and moreover vo ∈ L1(Ω,RN ). Then, the
mollification [v]h defined in (2.2) admits the following properties:

(i) Assume that v ∈ Lp(ΩT ,RN ) and vo ∈ Lp(Ω,RN ) for some p ≥ 1. Then, we
also have [v]h ∈ Lp(ΩT ,RN ) and the following quantitative estimate holds true:

‖[v]h‖Lp(ΩT ) ≤ ‖v‖Lp(ΩT ) + h
1
p ‖vo‖Lp(Ω).

Moreover, [v]h → v in Lp(ΩT ,RN ) as h ↓ 0.
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(ii) Suppose that v ∈ Lp(0, T ;W 1,p(Ω,RN )) and vo ∈ W 1,p(Ω,RN ) with p ≥ 1.
Then also [v]h ∈ Lp(0, T ;W 1,p(Ω,RN )) and the following quantitative estimate
holds true:

‖[v]h‖Lp(0,T ;W 1,p(Ω)) ≤ ‖v‖Lp(0,T ;W 1,p(Ω)) + h
1
p ‖vo‖W 1,p(Ω).

Moreover, [v]h → v in Lp(0, T ;W 1,p(Ω,RN )) as h ↓ 0.
(iii) Assume that v ∈ Lp(0, T ;W 1,p

0 (Ω,RN )) and vo ∈ W 1,p
0 (Ω,RN ). Then, also

[v]h ∈ Lp(0, T ;W 1,p
0 (Ω,RN )).

(iv) In the case that v ∈ C0([0, T ];L2(Ω,RN )) and moreover vo ∈ L2(Ω,RN ), we
have [v]h ∈ C0([0, T ];L2(Ω,RN )), [v]h(·, 0) = vo and moreover [v]h → v in
C0([0, T ];L2(Ω,RN )) as h ↓ 0.

(v) Suppose that v ∈ L∞(0, T ;L2(Ω,RN )) and vo ∈ L2(Ω,RN ). Then also ∂t[v]h ∈
L∞(0, T ;L2(Ω,RN )). Moreover we have

∂t[v]h = − 1
h

(
[v]h − v

)
.

(vi) If ∂tv ∈ L2(ΩT ,RN ) and vo ∈ L2(Ω,RN ), then we have ∂t[v]h → ∂tv in
L2(ΩT ,RN ) and the inequality

‖∂t[v]h‖L2(ΩT ) ≤ ‖∂tv‖L2(ΩT )

holds true for any h ∈ (0, T ]. 2

The next Lemma ensures the convergence f(x, [v]h, D[v]h)→ f(x, v,Dv) in the limit
h ↓ 0, provided that f(x, v,Dv) ∈ L1.

Lemma 2.3. Let T > 0 and assume that

v ∈ L1
(
0, T ;W 1,1(Ω,RN )

)
, with f(·, v,Dv) ∈ L1(ΩT )

and
vo ∈W 1,1(Ω,RN ), with f(·, vo, Dvo) ∈ L1(Ω).

Then, we have f(·, [v]h, D[v]h) ∈ L1(ΩT ) and moreover

lim
h↓0

∫ T

0

∫

Ω

f
(
x, [v]h, D[v]h

)
dxdt =

∫ T

0

∫

Ω

f(x, v,Dv) dxdt.

Proof. For simplicity we omit in our notation the v-dependence of the integrand f . This
is justified by the convexity assumption on the integrand with respect to (v,Dv). The
differences in the computations are just at a formal level. We first observe that

1

h(1− e− t
h )

∫ t

0

e
s−t
h ds = 1.

This allows us to interpret the mollification [v]h – modulo a multiplicative factor – as
a mean with respect to the measure e

s−t
h ds. Accordingly to this interpretation we first

rewrite f(x,D[v]h) and afterwards use the convexity of f and Jensen’s inequality. This
procedure yields the following point wise bound:

f
(
·, D[v]h

)
(x, t)

= f

(
x, e−

t
hDvo(x) +

1− e− t
h

h(1− e− t
h )

∫ t

0

Dv(x, s)e
s−t
h ds

)

≤ e− t
h f
(
x,Dvo(x)

)
+
(
1− e− t

h

)
f

(
x,

1

h(1− e− t
h )

∫ t

0

Dv(x, s)e
s−t
h ds

)

≤ e− t
h f
(
x,Dvo(x)

)
+

1

h

∫ t

0

f
(
x,Dv(x, s)

)
e
s−t
h ds

= [f(·, Dv)]h(x, t).
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Here [f(·, Dv)]h is defined according to definition (2.2) with vo replaced by f(·, Dvo).
Since f(·, Dv) ∈ L1(ΩT ) and f(·, Dvo) ∈ L1(Ω) by assumption, we obtain via
Lemma 2.2 (i) the uniform bound

‖[f(x,Dv)]h‖L1(ΩT ) ≤ ‖f(x,Dv)‖L1(ΩT ) + h‖f(x,Dvo)‖L1(Ω) <∞.
Since h‖f(x,Dvo)‖L1(Ω) → 0 in the limit h ↓ 0, a variant of the dominated convergence
theorem implies that

lim
h↓0

∫ T

0

∫

Ω

f
(
x,D[v]h

)
dxdt =

∫ T

0

∫

Ω

f(x,Dv) dxdt

holds true. This proves the claim of the Lemma. �

3. VARIATIONAL SOLUTIONS VERSUS PARABOLIC MINIMIZERS

In Definition 1.1 we introduced – following an idea of Lichnewsky & Temam [17] – the
notion of variational solutions. Nowadays the notion of parabolic minimizers introduced
independently by Wieser [29] has been used by several authors. They studied different
regularity properties such as the self-improving property of higher integrability in the vec-
torial case, local boundedness and Hölder continuity in the scalar case or partial regularity
in the vectorial case, cf. [11, 12, 25]. Moreover, there was some interest in extending the
notion to the metric space setting, cf. [13, 15, 16, 18, 19]. In this Section we aim to estab-
lish that variational solutions actually are parabolic minimizers. But before going into the
details we first give the Definition of a parabolic minimizer, introduced by Wieser [29]. In
the sequel we assume that f : Ω × Rn × RNn → R is a variational integrand satisfying
(1.2) and that the Cauchy-Dirichlet datum uo satisfies (1.3)2.

Definition 3.1. A measurable map u : Ω∞ → RN is termed parabolic minimizer associ-
ated to the variational integrand f and the Cauchy-Dirichlet datum uo if and only if

u ∈ Lp
(
0, T ;W 1,p

uo (Ω,RN )
)

∀T > 0

and moreover the following minimality condition
∫ T

0

∫

Ω

u · ∂tϕ+ f(x, u,Du) dxdt ≤
∫ T

0

∫

Ω

f(x, u+ ϕ,Du+Dϕ) dxdt(3.1)

holds true, whenever T > 0 and ϕ ∈ C∞0 (ΩT ,RN ). 2

Note that Definition 3.1 is local with respect to the initial boundary, i.e. u is not neces-
sarily equal to uo at the initial time t = 0. We should also mention here, that the Definition
of parabolic minimizers was given up to now only in the context of variational integrands
satisfying a standard p-growth condition form above and below. Actually, the notion was
that of a parabolicQ-minimizer, i.e. a mapping u as in Definition 3.1, but with a right-hand
side

Q

∫ T

0

∫

Ω

f(x, u+ ϕ,Du+Dϕ) dxdt

for some fixed Q ≥ 1. The case Q = 1 is of course the one of parabolic minimizers.
If ∂tu ∈ L2(ΩT ,RN ), or ∂tu ∈ Lp(0, T ;W−1,p′(Ω,RN )) for any T > 0, then one

can easily show that the minimality conditions (1.5) and (3.1) are equivalent (provided
that the function u in (3.1) satisfies u(·, 0) = uo). This can be seen by substituting
ϕ = v − u, respectively v = u + sϕ, with s > 0, together with a Minty type argument.
Note that the variational solution constructed in Theorem 1.2 satisfies ∂tu ∈ L2(Ω∞,RN )
and therefore it is a parabolic minimizer in the sense of Definition 3.1. Note also that
∂tu ∈ Lp(0, T ;W−1,p′(Ω,RN )) if f has p-growth from above, see also § 2.3. Since, in
general we do not want to impose a condition on the time derivative ∂tu, we need to regu-
larize u with respect to time, in order to prove that variational solutions are also parabolic
minimizers. For the sake of completeness, we provide this argument in the following.
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Proposition 3.2. If u is a variational solution in the sense of Definition 1.1, then it is also
a parabolic minimizer in the sense of Definition 3.1.

Proof. We consider a fixed T > 0 and a testing function ϕ ∈ C∞0 (ΩT ,RN ). Our aim
now, is to prove that inequality (3.1) holds true. To establish this, we would like to choose
v = u+sϕ with s > 0 as comparison function in (1.5). Then, the result would follow by a
Minty-type argument. However, since v = u+ sϕ is not an admissible choice in (1.5), we
have to use a certain mollification with respect to time. More precisely, in (1.5) we choose
the comparison map v = vh, where vh := [u]h + s[ϕ]h with s > 0. Here [u]h is defined
according to (2.2) and with uo as the choice for vo, while [ϕ]h is defined in the same way
but with vo = 0. The fact that v is admissible in (1.5) is an immediate consequence of
Lemma 2.2, (iii) and (v). Then, for the first term on the right-hand side of (1.5) we deduce
that
∫ T

0

∫

Ω

∂tvh · (vh − u) dxdt

=

∫ T

0

∫

Ω

[
∂t[u]h · ([u]h − u) + s∂t[u]h · [ϕ]h + s∂t[ϕ]h · (vh − u)

]
dxdt

=

∫ T

0

∫

Ω

[
− 1

h |[u]h − u|2 − s[u]h · ∂t[ϕ]h + s(vh − u) · ∂t[ϕ]h

]
dxdt

+ s

∫

Ω

(
[u]h · [ϕ]h

)
(·, T ) dx

≤
∫ T

0

∫

Ω

s(s[ϕ]h − u) · ∂t[ϕ]h dxdt+ s

∫

Ω

(
[u]h · [ϕ]h

)
(·, T ) dx .

In the second last line we used Lemma 2.2 (v) and performed an integration by parts with
respect to time. Note that no boundary term occurs for t = 0, since [ϕ]h(·, 0) = 0 by
Lemma 2.2 (iv). Inserting this into the minimality condition (1.5), we get
∫ T

0

∫

Ω

f(x, u,Du) dxdt ≤
∫ T

0

∫

Ω

[
s(s[ϕ]h − u) · ∂t[ϕ]h + f(x, vh, Dvh)

]
dxdt

+ s

∫

Ω

(
[u]h · [ϕ]h

)
(·, T ) dx− 1

2‖(vh − u)(·, T )‖2L2(Ω).

Now, in view of Lemma 2.2 (i), (iv), (vi) and Lemma 2.3 we can pass to the limit h ↓ 0
in the preceding inequality. Note that the second boundary term is non-positive and can
therefore be discarded in advance. Moreover, observe that the first boundary term after the
passage to the limit vanishes, since ϕ(·, T ) ≡ 0 on Ω. Altogether, this leads us to
∫ T

0

∫

Ω

f(x, u,Du) dxdt

≤
∫ T

0

∫

Ω

[
s(sϕ− u) · ∂tϕ+ f(x, u+ sϕ,Du+ sDϕ)

]
dxdt

≤
∫ T

0

∫

Ω

[
s(sϕ− u) · ∂tϕ+ (1− s)f(x, u,Du) + sf(x, u+ ϕ,Du+Dϕ)

]
dxdt.

In the last line we used the convexity of f . Subtracting (1 − s)
∫ T

0

∫
Ω
f(x, u,Du) dxdt

on both sides (note that the finiteness of the integral follows by choosing v(·, t) ≡ uo as
comparison map in (1.5)) and dividing by s > 0 we get
∫ T

0

∫

Ω

f(x, u,Du) dxdt ≤
∫ T

0

∫

Ω

[
(sϕ− u) · ∂tϕ+ f(x, u+ ϕ,Du+Dϕ)

]
dxdt.
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Now, we pass to the limit s ↓ 0 and finally come up with the inequality
∫ T

0

∫

Ω

[
u · ∂tϕ+ f(x, u,Du)

]
dxdt ≤

∫ T

0

∫

Ω

f(x, u+ ϕ,Du+Dϕ) dxdt.

The previous inequality holds true for any ϕ ∈ C∞0 (ΩT ,RN ). But this means that u is a
parabolic minimizer in the sense of Definition 3.1 and completes the proof. �

In our existence theorem we construct variational solutions with a time derivative ∂tu ∈
L2(Ω∞,RN ). In this case we are able to show that the minimality condition (3.1) is
satisfied on a.e. time slice Ω× {t}. The precise statement is as follows:

Proposition 3.3. Let u be as in Definition 3.1, that is u ∈ Lp(0, T ;W 1,p
uo (Ω,RN )) for any

T > 0. If in addition ∂tu ∈ L2(ΩT ,RN ) for any T > 0, then the minimality condition
(3.1) is equivalent to the following minimality condition on time slices:

∫

Ω

f(·, u,Du)(·, t) dx ≤
∫

Ω

[
∂tu(·, t) · η + f(·, u+ η,Du+Dη)(·, t)

]
dx(3.2)

holds true for any η ∈ C∞0 (Ω,RN ) and a.e. t ∈ (0,∞).

Proof. First, we suppose that u satisfies (3.1). We test (3.1) with a testing function of
splitting type, i.e. with ϕ(x, t) = η(x)ζ(t), where ζ ∈ C∞0 ((0,∞)) with ζ ≥ 0 and
η ∈ C∞0 (Ω,RN ). This implies that
∫

spt ζ

∫

Ω

f(x, u,Du) dxdt

≤
∫

spt ζ

∫

Ω

[
− ζ ′u · η + f(x, u+ ζη,Du+ ζDη)η

]
dxdt

≤
∫

spt ζ

∫

Ω

[
ζ∂tu · η + (1− ζ)f(x, u,Du) + ζf(x, u+ η,Du+Dη)

]
dxdt.

In the last line we used the convexity of f and performed an integration by parts. The latter
is possible due to the assumption on the time derivative of u. Subtracting the integral of
the left-hand side on both sides of the inequality we infer that

0 ≤
∫

spt ζ

∫

Ω

ζ
[
∂tu · η + f(x, u+ η,Du+Dη)− f(x, u,Du)

]
dxdt

holds true for any 0 ≤ ζ ∈ C∞0 ((0,∞)). But this implies for a.e. t > 0 that
∫

Ω

f(·, u,Du)(·, t) dx ≤
∫

Ω

[
∂tu(·, t) · η + f(·, u+ η,Du+Dη)(·, t)

]
dx

holds true for any η ∈ C∞0 (Ω,RN ). This proves the claim.
On the other hand, if u satisfies the minimality condition (3.2) for a.e. time slice, we

simply choose ϕ(·, t) as testing function η on the time slice Ω× {t}, where ϕ is a smooth
comparison function with compact support in Ω∞. Integrating the result with respect to
time, proves that u satisfies (3.1). �

4. EXISTENCE VIA ELLIPTIC CONVEX MINIMIZATION

In this Chapter we give the proof of Theorem 1.2. Henceforth, we assume that the
variational integrand f : Ω×RN ×RNn → R satisfies (1.2) and that the Cauchy-Dirichlet
datum is as in (1.3).
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4.1. A sequence of minimizers to a variational functional on Ω∞. In this chapter we
consider for ε ∈ (0, 1] variational integrals of the form

Fε(v) :=

∫ ∞

0

∫

Ω

e−
t
ε

[
1
2 |∂tv|2 + 1

εf(x, v,Dv)
]
dxdt.

In order to deal with the existence problem associated to these functionals we first introduce
a suitable function space, in which the minimization of Fε will be achieved. A measurable
function v : Ω∞ → RN is said to belong to Kε if and only if v ∈ W 1,1(ΩT ,RN ) for any
T > 0 and moreover

‖v‖Kε :=

[ ∫ ∞

0

∫

Ω

e−
t
ε |∂tv|2 dxdt

] 1
2

+

[ ∫ ∞

0

∫

Ω

e−
t
ε

[
|v|p + |Dv|p

]
dxdt

] 1
p

<∞.

We note that the time independent extension uo(·, t) := uo for any t > 0 of uo ∈
W 1,p(Ω,RN ) ∩ L2(Ω,RN ) to Ω∞ belongs to Kε. The subspace of functions with zero
trace on the lateral boundary, i.e. those functions v ∈ Kε satisfying v = 0 on ∂PΩ∞ (as
usual this has to be understood in the sense of traces), shall be abbreviated byNε. We keep
in mind that (Kε, ‖·‖Kε), and therefore also (Nε, ‖·‖Kε), are Banach spaces. Furthermore,
for a map v ∈ Kε there holds

∫ T

0

∫

Ω

(
|∂tv|2 + |v|p + |Dv|p

)
dxdt <∞ ∀ T > 0.

Again, considering the function uo as above, we observe that the class of mappings v ∈
uo +Nε with finite energy Fε(v) <∞ is non-empty, that is

(
uo +Nε

)
∩ {Fε(u) <∞} 6= ∅.

Furthermore, by assumption (1.2) we infer the following bound from below for the func-
tional Fε:

Fε(v) ≥
∫ ∞

0

∫

Ω

e−
t
ε

[
1
2 |∂tv|2 + ν|Dv|p − g(1 + |v|)

]
dxdt ∀ v ∈ uo +Nε.

For functions v ∈ uo+Nε a slice wise application of Poincaré’s inequality to (v−uo)(·, t)
for a.e. t ∈ (0,∞) implies that

∫ ∞

0

∫

Ω

e−
t
ε |v|p dxdt ≤ c

∫ ∞

0

∫

Ω

e−
t
ε

(
|Dv|p + |uo|p + |Duo|p

)
dxdt

= c

∫ ∞

0

∫

Ω

e−
t
ε |Dv|p dxdt+ c

∫

Ω

(
|uo|p + |Duo|p

)
dx,

holds true for a constant c = c(p, diam(Ω)) ≥ 1. Therefore, for δ ∈ (0, 1] we obtain by
Young’s inequality that

∫ ∞

0

∫

Ω

e−
t
ε g(1 + |v|) dxdt

≤
∫ ∞

0

∫

Ω

e−
t
ε

[
δ(1 + |v|p) + cδ|g|p

′]
dxdt

≤ c δ
∫ ∞

0

∫

Ω

e−
t
ε |Dv|p dxdt+ cδ

∫

Ω

[
1 + |g|p′ + |uo|p + |Duo|p

]
dx,

for a constant c = c(p, diam(Ω)) ≥ 1. Inserting this above and choosing δ > 0 small
enough, we obtain that

Fε(v) ≥ ν

2c

∫ ∞

0

∫

Ω

e−
t
ε

[
|∂tv|2 + |v|p + |Dv|p

]
dxdt− c

[
1 + ‖g‖p

′

Lp′
+ ‖uo‖pW 1,p

]

≥ ν
2c min

{
‖v‖2Kε , ‖v‖

p
Kε
}
− c
[
1 + ‖g‖p

′

Lp′ (Ω)
+ ‖uo‖pW 1,p(Ω)

]
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holds true for any v ∈ uo + Nε with a constant c = c(ν, p,diam(Ω)) ≥ 1. This ensures
that the functional Fε is coercive with respect to ‖ · ‖Kε on uo + Nε. Furthermore, the
convexity of the integrand f implies the strict convexity of the functional Fε. Therefore,
we can apply the lower semicontinuity result [10, Theorem 4.3] to conclude the following
existence result for Fε-minimizing maps:

Lemma 4.1. For any given ε ∈ (0, 1], the variational functional Fε admits a unique
minimizer uε ∈ uo +Nε.
4.2. Energy bounds. In this section we establish certain energy bounds for minimizers
uε ∈ uo + Nε of Fε, which later on allow us to extract a converging subsequence in the
limit ε ↓ 0. We start with the following simple uniform energy bound.

Lemma 4.2. For any minimizer uε ∈ uo +Nε of Fε we have

Fε(uε) ≤
∫

Ω

f(x, uo, Duo) dx.

Proof. From the minimality of uε, note that the time independent extension uo of uo to
Ω∞ is an admissible comparison function, we conclude

Fε(uε) ≤ Fε(uo) =
1

ε

∫ ∞

0

∫

Ω

e−
t
ε f(x, uo, Duo) dxdt =

∫

Ω

f(x, uo, Duo) dx.

This proves the claim. �
By the definition of Fε the preceding lemma immediately implies

Corollary 4.3. Any minimizer uε ∈ uo +Nε of Fε satisfies
∫ ∞

0

∫

Ω

e−
t
ε |∂tuε|2 dxdt ≤ 2

∫

Ω

f(x, uo, Duo) dx.

and ∫ ∞

0

∫

Ω

e−
t
ε f(x, uε, Duε) dxdt ≤ ε

∫

Ω

f(x, uo, Duo) dx.

In the sequel we shall improve the preceding bounds for the time and the spatial deriva-
tive, in the sense that the weight e−

t
ε ≤ 1 can be removed in the integrals on the left-hand

side. Here, we use the fact that minimizers of variational functionals often satisfy certain
conservation laws (Noether theorem). These conservation laws usually follow from inner
variations. Here, we use inner variations with respect to the time variable. The argument is
inspired by the paper of Sera & Tilli [26], where the authors use inner variations to get uni-
form estimates for a sequence of approximating solutions to the non-homogeneous wave
equation. Before stating the result, we need to define for t > 0 the following auxiliary
functions:

Lε(t) :=

∫

Ω

1
2 |∂tuε(·, t)|2 dx,

Hε(t) :=

∫

Ω

[
1
2 |∂tuε(·, t)|2 + 1

εf(·, uε, Duε)(·, t)
]
dx,

Iε(t) :=

∫ ∞

t

e−
s
εHε(s) ds.

Note that Lε(t) and Hε(t) are non-negative and locally integrable on (0,∞), and that
Iε(t) is non-negative, continuous and decreasing for t ≥ 0. Furthermore, we have Iε(0) =
Fε(uε) and Iε(t)→ 0 as t ↑ ∞.

Lemma 4.4. Let uε ∈ uo+Nε be a minimizer of Fε. Then, for a.e. t ∈ (0,∞) there holds
d

dt

(
e
t
ε Iε(t)

)
= −2Lε(t) ≤ 0.

In particular, the function t 7→ e
t
ε Iε(t) is decreasing.
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Proof. As already mentioned above, we use inner variations with respect to time. To
avoid an overburdened notation we delete the subscript ε from our notation and simply
write u ≡ uε as well as F ,L,H, I instead of Fε,Lε,Hε, Iε. Let g ∈ C∞0 (R+). For
δ ∈ R, we define the function ϕδ ∈ C∞0 (R+) by

ϕδ(s) := s+ δg(s).

For sufficiently small values of |δ| � 1, we have that ϕδ is a diffeomorphism of R+ onto
itself. The inverse function of ϕδ we denote by ψδ , i.e. we write ψδ := ϕ−1

δ . Then, we
have t = ϕδ(ψδ(t)) = ψδ(t) + δg(ψδ(t)), so that

(4.1) ψδ(t) = t− δg(ψδ(t)).

Now, we define the inner variation uδ(x, s) := u(x, ϕδ(s)), and compute its energy:

F(uδ) =

∫ ∞

0

∫

Ω

e−
s
ε

[
1
2 |∂suδ|2 + 1

εf(·, uδ, Duδ)
]
dxds

=

∫ ∞

0

∫

Ω

e−
s
ε

[
1
2 |∂tu(x, ϕδ(s))|2ϕ′δ(s)2

+ 1
εf(x, u(x, ϕδ(s)), Du(x, ϕδ(s)))

]
dxds

=

∫ ∞

0

∫

Ω

e−
ψδ(t)

ε

[
1
2 |∂tu(x, t)|2ϕ′δ(ψδ(t))2

+ 1
εf(x, u(x, t), Du(x, t))

]
ψ′δ(t) dxdt

=

∫ ∞

0

∫

Ω

e−
ψδ(t)

ε

[
1

2ψ′δ(t)
|∂tu|2 +

ψ′δ(t)
ε

f(·, u,Du)

]
dxdt.

Since ϕ′δ, ψ
′
δ ∈ [ 1

2 ,
3
2 ] for |δ| � 1 small enough and e−

ψδ(t)

ε ≤ e
δ‖g‖∞
ε e−

t
ε , we find

that F(uδ) < ∞ for |δ| � 1. To proceed further, we observe from (4.1) that the func-
tion ψδ fulfills the identities ψδ(t)|δ=0 = t, ψ′δ(t)|δ=0 = 1, d

dδψδ(t)|δ=0 = −g(t) and
d
dδψ

′
δ(t)|δ=0 = −g′(t) for any t ∈ R+. Taking these identities and the fact that u ≡ uε is

a minimizer of F ≡ Fε into account, we can use uδ as a comparison map for u. Hence,
δ 7→ F(uδ) has a minimum at δ = 0, and therefore we must have (note that the function
δ 7→ F(uδ) is differentiable with respect to δ)

0 =
d

dδ

∣∣∣
δ=0
F(uδ) =

∫ ∞

0

∫

Ω

e−
t
ε g(t)

ε

[
1
2 |∂tu|2 + 1

εf(·, u,Du)
]
dxdt

+

∫ ∞

0

∫

Ω

e−
t
ε

[
1
2g
′(t)|∂tu|2 − 1

εg
′(t)f(·, u,Du)

]
dxdt.

The preceding identity is often called first variation with respect to inner variations or
sometimes also second Euler-Lagrange equation. Taking the definitions of L,H and I
into account, and observing that I ′(t) = −e− tεH(t) for a.e. t ∈ R+, we can re-write the
second Euler-Lagrange equation from above in the form

0 =

∫ ∞

0

[
− g(t) 1

εI ′(t) + g′(t)I ′(t) + g′(t)2e−
t
εL(t)

]
dt

=

∫ ∞

0

g′(t)
[

1
εI(t) + I ′(t) + 2e−

t
εL(t)

]
dt,

where we performed in the last line an integration by parts and also used the fact that g has
compact support in R+. Since g ∈ C∞0 (R+) was arbitrary, we conclude by the classical Du
Bois-Raymond Lemma, that the expression appearing in the parenthesis must be constant,
i.e. that

1
εI(t) + I ′(t) + 2e−

t
εL(t) ≡ C for a.e. t ∈ (0,∞)
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holds true for some constant C ≥ 0. Since I ′(t) + e−
t
εL(t) ∈ L1(R+) and I(t) → 0 as

t→∞, we can conclude that C = 0. Therefore, multiplying the preceding identity by e
t
ε

we find that
d

dt

(
e
t
ε I(t)

)
= −2L(t) for a.e. t ∈ (0,∞).

Since L is non-negative, this proves the assertion of the lemma. �

Lemma 4.4 yields several important bounds for Fε-minimizers uε ∈ uo +Nε. We start
with the following easy consequence:

Corollary 4.5. Let uε ∈ uo + Nε be a minimizer of Fε. Then, for any t ∈ (0,∞) there
holds

e
t
ε Iε(t) ≤

∫

Ω

f(x, uo, Duo) dx.

Proof. From Lemma 4.4 we know that the function t 7→ e
t
ε I(t) is decreasing. This,

together with Lemma 4.2 yields that

e
t
ε Iε(t) ≤ e0Iε(0) = Fε(uε) ≤

∫

Ω

f(x, uo, Duo) dx,

proving the assertion of the lemma. �

Lemma 4.6. Any minimizer uε ∈ uo +Nε of Fε satisfies
∫ ∞

0

∫

Ω

|∂tuε|2 dxdt ≤
∫

Ω

f(x, uo, Duo) dx.

Proof. First, from Lemma 4.4 we recall the identity 2Lε(t) = − d
dt (e

t
ε Iε(t)) for a.e.

t ∈ (0,∞). Integrating over (t1, t2) b (0,∞) and using Corollary 4.5, we find that

2

∫ t2

t1

L(t) dt = −e tε I(t)
∣∣t2
t1
≤ e

t1
ε I(t1) ≤

∫

Ω

f(x, uo, Duo) dx.

Since the right-hand side is independent of t1 and t2 we are allowed to pass to the limits
t1 ↓ 0 and t2 ↑ ∞. This proves the result. �

Lemma 4.7. Let uε ∈ uo + Nε be a minimizer of Fε. Then, for any 0 ≤ t1 < t2 with
t2 − t1 ≥ ε there holds

1

t2 − t1

∫ t2

t1

∫

Ω

f(x, uε, Duε) dxdt ≤ 2e

∫

Ω

f(x, uo, Duo) dx.

Proof. From Corollary 4.5 we obtain for any t ∈ (0,∞) that
∫ t+ε

t

∫

Ω

f(x, uε, Duε) dxds ≤ e
t+ε
ε

∫ t+ε

t

∫

Ω

e−
s
ε f(x, uε, Duε) dxds

≤ εe t+εε
∫ t+ε

t

e−
s
εHε(s) ds

≤ εe e tε Iε(t) ≤ εe
∫

Ω

f(x, uo, Duo) dx.

For 0 ≤ t1 < t2 with t2 − t1 ≥ ε we now choose K ∈ N in such a way that (K − 1)ε <
t2 − t1 ≤ Kε holds true. Then, we have Kε ≤ t2 − t1 + ε ≤ 2(t2 − t1). Therefore, we
conclude from the last inequality that

∫ t2

t1

∫

Ω

f(x, uε, Duε) dxdt ≤
K−1∑

i=0

∫ t1+(i+1)ε

t1+iε

∫

Ω

f(x, uε, Duε) dxdt

≤ eKε
∫

Ω

f(x, uo, Duo) dx
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≤ 2e(t2 − t1)

∫

Ω

f(x, uo, Duo) dx.

This proves the assertion of the lemma. �
Corollary 4.8. Under the assumptions (1.2) and (1.3), any minimizer uε ∈ uo +Nε of Fε
satisfies

∫ T

0

∫

Ω

[
|uε|p + |Duε|p

]
dxdt ≤ c T

∫

Ω

[
1 + |g|p′ + |uo|p + f(x, uo, Duo)

]
dx

for any T ≥ ε and with a constant c = c(ν, p,diam(Ω)).

Proof. First we use the growth assumption (1.2) and Lemma 4.7 to infer that
∫ T

0

∫

Ω

[
ν|Duε|p − g(1 + |uε|)

]
dxdt ≤ 2eT

∫

Ω

f(x, uo, Duo) dx.

Arguing similarly to the proof in § 4.1 we find that
∫ T

0

∫

Ω

|uε|p dxdt ≤ c
∫ T

0

∫

Ω

|Duε|p dxdt+ c T

∫

Ω

(
|uo|p + |Duo|p

)
dx

holds true with a constant c depending only on p and diam(Ω). Therefore, for δ ∈ (0, 1]
we obtain by Young’s inequality that
∫ T

0

∫

Ω

g(1 + |uε|) dxdt ≤
∫ T

0

∫

Ω

[
δ(1 + |uε|p) + cδ|g|p

′]
dxdt

≤ c δ
∫ T

0

∫

Ω

|Duε|p dxdt+ cδ

∫

Ω

[
1 + |g|p′ + |uo|p + |Duo|p

]
dx

for a constant cδ = cδ(p,diam(Ω)), 1/δ). Joining the preceding estimates and choosing
δ > 0 small enough, we obtain the claim of the lemma. �
4.3. Passage to the limit. Here, we will pass to the limit ε ↓ 0 and thereby prove the part
of Theorem 1.2 concerning the existence of variational solutions.

By Lemma 4.6 and Corollary 4.8 we know that the family (uε)ε>0 of Fε-minimizing
functions is bounded in Lp(0, T ;W 1,p(Ω,RN )) for any fixed T > 0, and that the cor-
responding time derivatives ∂tuε are bounded in L2(Ω∞,RN ) (both assertions holding
uniformly with respect to ε ∈ (0, 1]). Therefore, there exists a (not re-labelled) subse-
quence εj ↓ 0, which we denote still by ε, and a measurable function u : Ω∞ → RN with
the following properties: For any T > 0 we have u ∈ Lp(0, T ;W 1,p(Ω,RN )). Moreover,
the time derivative of u exists and satisfies ∂tu ∈ L2(Ω∞,RN ). Further, we have u = uo
on the parabolic boundary ∂PΩ∞ in the sense of traces. Finally, in the limit ε ↓ 0 we have





uε ⇀ u weakly in Lp(ΩT ,RN )

Duε ⇀ Du weakly in Lp(ΩT ,RNn)

∂tuε ⇀ ∂tu weakly in L2(Ω∞,RN ).

As mentioned above, the limit ε ↓ 0 has to be understood in the sense that there exists
a sequence εj ↓ 0 such that the above convergences hold true as j → ∞. Moreover, by
lower semicontinuity u satisfies the energy estimates (1.6) and (1.7). In particular, estimate
(1.6) implies that for any 0 ≤ t1 < t2 we have

‖u(·, t2)− u(·, t1)‖2L2(Ω) =

∫

Ω

∣∣∣∣
∫ t2

t1

∂tu(·, t) dt
∣∣∣∣
2

dx

≤ |t2 − t1|
∫ t2

t1

∫

Ω

|∂tu|2 dxdt

≤ |t2 − t1|
∫

Ω

f(x, uo, Duo) dx.
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Choosing t1 = 0, the preceding inequality implies for any t > 0 that
∫

Ω

|u(·, t)|2 dx ≤ 2

∫

Ω

|uo|2 dx+ 2

∫

Ω

|u(·, t)− uo|2 dx

≤ 2

∫

Ω

|uo|2 dx+ 2t

∫

Ω

f(x, uo, Duo) dx.

Therefore, we conclude that

u ∈ C0, 12
(
[0, T ];L2(Ω)

)
for any T > 0.

For further reference we note that the same computations can be performed for u replaced
by uε. In particular, choosing t1 = 0 in the second last inequality, we find that

∫

Ω

|uε(·, t)− uo|2 dx ≤ t
∫

Ω

f(x, uo, Duo) dx for any t > 0.(4.2)

At this point it remains to show that the limit function u is a variational solution in the
sense of Definition 1.1. To this aim we fix T > 0 and let ϕ ∈ Lp(0, T ;W 1,p

0 (Ω,RN )) with
∂tϕ ∈ L2(ΩT ,RN ). For θ ∈ (0, T2 ) we define the following cut-off function with respect
to time:

ζθ(t) :=





1
θ t if t ∈ [0, θ)

1 if t ∈ [θ, T − θ]
1
θ (T − t) if t ∈ (T − θ, T ].

Then, for any choice of ε, δ ∈ (0, 1) the function

ϕ̃ε,δ(·, t) :=

{
δe

t
ε ζθ(t)ϕ(·, t) if t ∈ [0, T ]

0 if t > T

belongs to Nε, and therefore uε + ϕ̃ε,δ is an admissible comparison function for the Fε-
minimizing mapping uε. By the minimizing property of uε we therefore obtain that

Fε(uε) ≤ Fε(uε + ϕ̃ε,δ)

holds true, and this can be re-written in the form

0 ≤
∫ T

0

∫

Ω

e−
t
ε

[
1
2

[
|∂tuε + δ∂t(e

t
ε ζθϕ)|2 − |∂tuε|2

]

+ 1
ε

[
f(x, uε + δe

t
ε ζθϕ,Duε + δe

t
ε ζθDϕ)− f(x, uε, Duε)

]]
dxdt.

Evaluating the terms containing the time derivative, and using the convexity of f with
respect to the variables (u, ξ), i.e. the fact that

f(·, uε + δe
t
ε ζθϕ,Duε + δe

t
ε ζθDϕ)− f(·, uε, Duε)

≤ δe tε ζθ
(
f(·, uε + ϕ,Duε +Dϕ)− f(·, uε, Duε)

)

holds true (here we need to have that δe
T
ε ≤ 1, which is of course satisfied for δ small

enough), we conclude that

0 ≤
∫ T

0

∫

Ω

e−
t
ε

[
1
2δ

2|∂t(e
t
ε ζθϕ)|2 + δ∂tuε · ∂t(e

t
ε ζθϕ)

+ 1
εδe

t
ε ζθ
[
f(·, uε + ϕ,Duε +Dϕ)− f(·, uε, Duε)

]]
dxdt.

We multiply the preceding inequality by ε/δ and subsequently let δ ↓ 0. This yields the
estimate

0 ≤
∫ T

0

∫

Ω

e−
t
ε

[
ε∂tuε · ∂t(e

t
ε ζθϕ)

+ e
t
ε ζθ
[
f(·, uε + ϕ,Duε +Dϕ)− f(·, uε, Duε)

]]
dxdt
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=

∫ T

0

∫

Ω

ζθ

[
∂tuε · ϕ+ f(·, uε + ϕ,Duε +Dϕ)− f(·, uε, Duε)

]
dxdt

+ ε

∫ T

0

∫

Ω

[
ζ ′θ∂tuε · ϕ+ ζθ∂tuε · ∂tϕ

]
dxdt.

Now, we consider v ∈ Lp(0, T ;W 1,p
uo (Ω,RN )) with ∂tv ∈ L2(ΩT ,RN ). Then, ϕ = v−uε

is an admissible choice in the preceding calculation. Therefore, the last inequality can be
re-written in terms of v as follows:

∫ T

0

∫

Ω

f(·, uε, Duε) dxdt

≤
∫ T

0

∫

Ω

(1− ζθ)f(·, uε, Duε) dxdt+

∫ T

0

∫

Ω

ζθ∂tuε · (v − uε) dxdt

+

∫ T

0

∫

Ω

ζθf(·, v,Dv) dxdt

+ ε

∫ T

0

∫

Ω

[
ζ ′θ∂tuε · (v − uε) + ζθ∂tuε · ∂t(v − uε)

]
dxdt

=: Iε + IIε + IIIε + IVε.

The meaning of Iε – IVε is obvious in this context. If θ ≥ ε, the term Iε can be bounded
with the help of Lemma 4.7 as follows:

Iε ≤
∫ θ

0

∫

Ω

f(·, uε, Duε) dxdt+

∫ T

T−θ

∫

Ω

f(·, uε, Duε) dxdt

≤ 4θe

∫

Ω

f(·, uo, Duo) dx.

The term IIε can be re-written in the form

IIε =

∫ T

0

∫

Ω

ζθ∂tv · (v − uε) dxdt−
1

2

∫ T

0

∫

Ω

ζθ∂t|v − uε|2 dxdt .

Since ζθ(T ) = 0 = ζθ(0), we obtain for the second term on the right-hand side by an
integration by parts that

−1

2

∫ T

0

∫

Ω

ζθ∂t|v − uε|2 dxdt =
1

2

∫ T

0

∫

Ω

ζ ′θ|v − uε|2 dxdt

=
1

2θ

∫ θ

0

∫

Ω

|v − uε|2 dxdt−
1

2θ

∫ T

T−θ

∫

Ω

|v − uε|2 dxdt.

For the first term on the right-hand side we use estimate (4.2) and get

1

2θ

∫ θ

0

∫

Ω

|v − uε|2 dxdt

≤
[(

1

2θ

∫ θ

0

∫

Ω

|v − u0|2 dxdt
) 1

2

+

(
1

2θ

∫ θ

0

∫

Ω

|uε − u0|2 dxdt
) 1

2
]2

≤
[(

1

2θ

∫ θ

0

∫

Ω

|v − u0|2 dxdt
) 1

2

+

(
θ

4

∫

Ω

f(x, uo, Duo) dx

) 1
2
]2

.

Collecting terms and using the weak convergence uε ⇀ u in L2(ΩT ,RN ) we can pass to
the limit ε ↓ 0 in IIε and obtain that

lim inf
ε↓0

IIε ≤
∫ T

0

∫

Ω

ζθ∂tv · (v − u) dxdt− 1

2θ

∫ T

T−θ

∫

Ω

|v − u|2 dxdt
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+

[(
1

2θ

∫ θ

0

∫

Ω

|v − u0|2 dxdt
) 1

2

+

(
θ

4

∫

Ω

f(x, uo, Duo) dx

) 1
2
]2

.

Finally, since ∂tuε and uε are uniformly bounded in L2(ΩT ,RN ), we have that IVε → 0
as ε ↓ 0. Inserting the previous observations above and using the lower semicontinuity of
the convex functional w 7→

∫ T
0

∫
Ω
f(x,w,Dw) dxdt with respect to weak convergence in

L1(0, T ;W 1,1(ΩT ,RN )), we arrive at
∫ T

0

∫

Ω

f(·, u,Du) dxdt ≤ lim inf
ε↓0

∫ T

0

∫

Ω

f(·, uε, Duε) dxdt

≤
∫ T

0

∫

Ω

ζθ
[
∂tv · (v − u) + f(·, v,Dv)

]
dxdt+ 4θe

∫

Ω

f(·, uo, Duo) dx

+

[(
1

2θ

∫ θ

0

∫

Ω

|v − u0|2 dxdt
) 1

2

+

(
θ

4

∫

Ω

f(x, uo, Duo) dx

) 1
2
]2

− 1

2θ

∫ T

T−θ

∫

Ω

|v − u|2 dxdt.

Note, that this last inequality holds true for any θ ∈ (0, T2 ), and therefore we can pass to
the limit θ ↓ 0 in the right-hand side. We arrive at

∫ T

0

∫

Ω

f(·, u,Du) dxdt ≤
∫ T

0

∫

Ω

[
∂tv · (v − u) + f(·, v,Dv)

]
dxdt

+ 1
2‖v(·, 0)− uo‖2L2(Ω) − 1

2‖(v − u)(·, T )‖2L2(Ω).

This proves the claim that is u is a variational solution to (1.5).

4.4. Uniqueness for strictly convex integrands. Here, we prove that the parabolic mini-
mizer is unique, if f is strictly convex. To this aim, we suppose that

u1, u2 ∈ Lp
(
0, T ;W 1,p

uo (Ω,RN )
)
∩ C0

(
[0, T ];L2(Ω,RN )

)
, for any T > 0

are two different variational solutions to (1.5). Adding the variational inequalities (1.5)
for u1 and u2 for some fixed T > 0 and taking into account the fact that ‖(v −
ui)(·, T )‖2L2(Ω) ≥ 0 for i = 1, 2 yields for any v ∈ Lp(0, T ;W 1,p

uo (Ω,RN )) with
∂tv ∈ L2(ΩT ,RN ) that

∫ T

0

∫

Ω

[
f(x, u1, Du1) + f(x, u2, Du2)

]
dxdt

≤ 2

∫ T

0

∫

Ω

[
∂tv · (v − w) + f(x, v,Dv)

]
dxdt+ ‖v(·, 0)− uo‖2L2(Ω).

Here, we have abbreviated w := u1+u2

2 . At this point we would like to choose the com-
parison map v = w in the previous inequality. However, this is not allowed, since in
general we do not know that ∂tw belongs to L2(ΩT ,RN ). For this reason, we shall use
the time-regularized function [w]h from (2.2) with vo = uo and h ∈ (0, T ]. By Lemma 2.2
we have [w]h ∈ Lp(0, T ;W 1,p(Ω,RN )) with ∂t[w]h ∈ L2(ΩT ,RN ) and [w]h = uo on
∂PΩT . Therefore, we are allowed to choose v = [w]h as comparison function in the last
inequality and this leads to

∫ T

0

∫

Ω

[
f(x, u1, Du1) + f(x, u2, Du2)

]
dz

≤ 2

∫ T

0

∫

Ω

[
∂t[w]h ·

(
[w]h − w

)
+ f

(
x, [w]h, D[w]h

)]
dz =: 2(Ih + IIh),(4.3)
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with the obvious meaning of Ih and IIh. Due to Lemma 2.2 (v) we know that Ih is non-
negative, since

Ih = − 1

h

∫

ΩT

∣∣[w]h − w
∣∣2 dz ≤ 0.

In order to treat IIh we first observe by the convexity of f that
∫ T

0

∫

Ω

f(x,w,Dw) dxdt ≤ 1

2

∫ T

0

∫

Ω

[
f(x, u1, Du1) + f(x, u2, Du2)

]
dxdt <∞,

i.e. f(x,w,Dw) in L1(ΩT ,RNn). This allows us to apply Lemma 2.3 to infer that

lim
h↓0

IIh =

∫ T

0

∫

Ω

f(x,w,Dw) dxdt =

∫ T

0

∫

Ω

f
(
x, 1

2 (u1 + u2), 1
2 (Du1 +Du2)

)
dxdt

holds true. Using this observation and the fact that Ih ≤ 0 from above we can pass in (4.3)
to the limit h ↓ 0 to obtain that

∫ T

0

∫

Ω

[f(x, u1, Du1) + f(x, u2, Du2)] dxdt

≤ 2

∫ T

0

∫

Ω

f
(
x, 1

2 (u1 + u2), 1
2 (Du1 +Du2)

)
dxdt

<

∫ T

0

∫

Ω

[f(x, u1, Du1) + f(x, u2, Du2)] dxdt.

In the last step we used the strict convexity of f and the assumption that u1 6≡ u2. Thus,
we arrived at the desired contradiction. This proves the uniqueness of variational solutions
and thus finishes the proof of Theorem 1.2.
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