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TUG-OF-WAR, MARKET MANIPULATION
AND OPTION PRICING

K. NYSTRÖM, M. PARVIAINEN

Abstract. We develop an option pricing model based on a tug-
of-war game involving the the issuer and holder of the option. This
two-player zero-sum stochastic differential game is formulated in a
multi-dimensional financial market and the agents try, respectively,
to manipulate/control the drift and the volatility of the asset pro-
cesses in order to minimize and maximize the expected discounted
pay-off defined at the terminal date T . We prove that the game has
a value and that the value function is the unique viscosity solution
to a terminal value problem for a partial differential equation in-
volving the non-linear and completely degenerate parabolic infinity
Laplace operator.

1. Introduction

A feature of illiquid markets is that large transactions move prices.
This is a disadvantage for traders that need to liquidate large portfolios
or keep their stock holdings close to a pre specified target but there are
also situations where investors may benefit from moving prices. For
example, a large trader holding a large number of options may have
an incentive to attempt to impact the dynamics of the underlying and
to move the option value in a favorable direction if the increase in
the option value outweighs the trading costs in the underlying. There
are some empirical evidence, see [GS], [P01], [KS92], that in illiquid
markets option traders are in fact able to increase a derivatives value
by moving the price of the underlying.

In this paper we consider option pricing in the context of a two-player
zero-sum stochastic differential game in a multi-dimensional financial
market where the issuer and holder of the option try, respectively, to
manipulate/control the drift and the volatility of the asset processes in
order to minimize and maximize, respectively, the expected discounted
pay-off defined at the terminal date T . An important contribution of
this paper is that we are able to establish a connection between option
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pricing and games referred to as tug-of-wars. While in the prevailing
model for option pricing, the governing partial differential equation,
the Black-Scholes equation, is a linear second order parabolic equa-
tion, in our context the underlying partial differential equation becomes
substantially more involved due to the presence of the non-linear and
completely degenerate infinity and parabolic infinity Laplace operator.

1.1. Price dynamics. We here give a heuristic description of price
formation process underlying our model. We let

S(t) = (S1(t, ω), ..., Sn(t, ω)) : [0, T ]× Ω→ Rn
+

be the stochastic process which represents the prices of n assets at
time t ∈ [0, T ]. To keep mathematical tractability we formulate the
dynamics of S = S(t) as a system of stochastic differential equations
for the vector of log-returns

X(t) = (X1(t, ω), ..., Xn(t, ω)) : [0, T ]× Ω→ Rn,

Xi(t) = log(Si(t)) for i ∈ {1, ..., n}.
Let (Ω,F,P) be a probability space satisfying the standard assumptions
and let {ξi,k}, for i ∈ {1, . . . , n, n + 1}, k ∈ N, be sequences of i.i.d
random variables such that

P(ξi,k = 1) = 1/2 = P(ξi,k = −1).

In particular, {ξi,k}, represent the outcomes of sequences of standard
coin toss. We let Fk be a filtration of F to which {ξi,k} are adapted.

Let N ∈ N denote our discretization parameter. We let XN
i,k denote

the state of the log-returns of asset i after step k. Then, on this level
the model is

XN
i,k −XN

i,k−1 = a random walk increment with drift

+ an increment resulting from price manipulation

modeled as a tug-of-war game.

To be more precise, at step k of the game a sample of (ξ1,k, . . . , ξn+1,k)
is generated. For component i ∈ {1 . . . , n} contribution from the ran-
dom walk with drift is modeled as

µk
N

+
2√
N
σkξi,k,

where µi is a real value giving a drift and σi represents the magnification
of the step 2ξi,k (volatility can vary from the asset to asset).

To formulate the increment resulting from price manipulation mod-
eled as a tug-of-war game we let {θ±k } = {(θ±1,k, . . . , θ±n,k)} be Fk-adapted

random variables such that θ±k ∈ {x ∈ Rn : |x| ≤ 1/
√
N}. The

sequences {θ+
k }, {θ−k }, correspond to the control actions of the max-

imizing and minimizing player in the game to be described. In the
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tug-of-war game the idea is that {θ+
k }, {θ−k }, represent the displace-

ment exercised by the maximizing and minimizing player, respectively.
In particular, it is assumed that each of the two players can affect the
price process and push it in a favorable direction, but the turns to do so
are taken randomly. As the players are constantly competing against
each other, this game is called a tug-of-war game. In this setting, the
increment of component i, at step k, based on coin toss ξn+1,k, is

2σi

(
θ+
i,k

(1 + ξn+1,k)

2
+ θ−i,k

(1− ξn+1,k)

2

)

= 2σi

(
(θ+
i,k − θ−i,k)

2
ξn+1,k +

(θ+
i,k + θ−i,k)

2

)
.

Again it is assumed that the actions of the players are magnified by
the factors {σi}.

Put together, the position of the log-returns after j steps is XN
j =

(XN
i,j, ..., X

N
i,j), where

XN
i,j =xi + µi

j

N
+

2√
N
σi

j∑

k=1

ξi,k

+ 2σi

j∑

k=1

(
(θ+
i,k − θ−i,k)

2
ξn+1,k +

(θ+
i,k + θ−i,k)

2

)

We define {WN
i (t)}t≥0, i ∈ {1, ..., n+ 1}, by setting

(WN
1 (0), . . . ,WN

n+1(0)) = 0

and using the relations

WN
i (t) = WN

i ((k − 1)/N) +

(
t− k − 1

N

)√
Nξi,k,

whenever t ∈ ((k−1)/N, k/N ], k ∈ N. Moreover, we define continuous
time processes by setting

XN(t) = XN
[Nt], θ±,N(t) =

√
Nθ±[Nt].

With this notation, the above dynamics becomes

XN
i (t) = ANi (t) +BN

i (t) + CN
i (t), i ∈ {1, . . . , n}, (1.1)

where

ANi (t) = xi +

∫ t

0

µids+

∫ t

0

σidW
N
i (s),

BN
i (t) = σi

∫ t

0

(θ+,N
i (s)− θ−,Ni (s))dWN

n+1(s),

CN
i (t) = σi

∫ t

0

√
N(θ+,N

i (s) + θ−,Ni (s))ds.
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Then by passing to the limit, using Donsker’s invariance principle,

ANi (t) → xi +

∫ t

0

µids+

∫ t

0

σidWi(s),

BN
i (t) → σi

∫ t

0

(θ+
i (s)− θ−i (s))dWn+1(s),

as N → ∞ where Wi, Wn+1, are standard and independent Brownian
motions. The key difficulty when attempting to understand the contin-
uous time limit of the outlined price dynamics, as N →∞, is to under-
stand the asymptotics of the term CN

i (t). A solution due to [AB10] in

the context of time independent equations, is to replace
√
N with dy-

namically controlled quantities d+ and d−. This approach is motivated
by the connection of tug-of-war games to the infinity Laplace operator
in [PSSW09]. Therefore, as described later, the core of the model is
given by

dXi(s) =
(
µi + σi(d

+
i (s) + d−i (s))(θ+

i (s) + θ−i (s))
)
ds

+ σidWi(s) + σi(θ
+
i (s)− θ−i (s))dWn+1(s),

(1.2)

with sufficient assumptions on the controls d±, θ±. This is to be con-
sidered as the continuous time limit of (1.1).

1.2. Fair game value of options. Let (Ω,F, {Ft},P) denote a com-
plete filtered probability space with a right-continuous filtration sup-
porting an (n + 1)-dimensional and {Ft}-adapted Brownian motion
W = (W1, ...,Wn+1). We assume that all components are independent.

There are two competing players, one maximizing and one minimiz-
ing, which both attempt to control and manipulate the log-returns X(t)
of the underlying assets. Denote by Sn−1 the unit sphere of Rn. We let

H := Sn−1 × [0,∞),

and

A+ := A+(t) := (θ+(t), d+(t)), A− := A−(t) := (θ−(t), d−(t)),

where

θ±(t) ∈ Sn−1, d±(t) ∈ [0,∞), t ∈ [0, T ],

are {Ft}-adapted stochastic processes representing the control actions
of the maximizing and minimizing player. Heuristically, θ±(t) denotes
the directions and d±(t) the lengths of the steps taken by the players.
We let AC denote the set of all admissible controls.

Each player also chooses a strategy ρ± which represents a respond
to the actions of the opponent, i.e. the strategies ρ± are functions from
the space of controls to the space of controls. In particular, given a
control of the opponent, a strategy gives the corresponding control of
the player, and we let S denote the set of all admissible strategies.
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Detailed definitions of (admissible) controls ( AC) and strategies (S)
are given below in Definitions 2.1 and 2.2. Using this notation the
dynamics of the log-returns is given by (1.2).

Note that in (1.2), the time-dependent controls of the players en-
ter in the drift coefficient, and in the diffusion coefficient of the one-
dimensional Brownian motion Wn+1. Hence, this part of the dynamics
is degenerate in the sense that it is possible for the players to completely
switch off the one-dimensional Brownian motion Wn+1.

Given A± = (θ±, d±) and a pay-off function g at T , we set

J (x,t)(A+, A−) := E[e−r(T−t)g(X(x,t)(T ))]

= E[e−r(T−t)g(X(T ))] (1.3)

where the superscript (x, t) indicates that the game starts at position
x at time t. The expectation E[·] is taken with respect to the measure
P.

Definition 1.1. The upper and lower values of the stochastic dynamic
game are denoted by U+(x, t) and U−(x, t), and defined as

U+(x, t) = sup
ρ+∈S

inf
A−∈AC

J (x,t)(ρ+(A−), A−),

U−(x, t) = inf
ρ−∈S

sup
A+∈AC

J (x,t)(A+, ρ−(A+)).

The game is said to have a value at (x, t) if U+(x, t) = U−(x, t). If
U+(x, t) = U−(x, t) =: U(x, t), then we say that U(x, t) is the fair
game value of the option.

1.3. Statement of main results. Our fair game value of the option
is related to the degenerate partial differential operator F

F (u,Du,D2u) :=
2

|Du|2
( n∑

i,j=1

uxixjuxiuxjσiσj

)

+
1

2

( n∑

i=1

σ2
i uxixi

)
+

n∑

i=1

µiuxi − ru,
(1.4)

where Du := (ux1 , ...., uxn)′, and D2u is the matrix consisting of the
second order derivatives. We consider the terminal value problem

{
∂tu+ F (u,Du,D2u) = 0, in Rn × (0, T ),

u(x, T ) = g(x), on Rn.
(1.5)

Solutions to (1.5) has to be understood in the sense of viscosity so-
lutions as defined in the bulk of the paper. Concerning the pay-off
g, we adopt the following convention: throughout the paper it is our
standing assumption that the function g is a positive bounded Lipschitz
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function, i.e.

sup
x∈Rn

g(x) + sup
x,y∈Rn,x 6=y

|g(x)− g(y)|
|x− y| ≤ L, (1.6)

for some L < ∞. The assumptions concerning boundedness and posi-
tivity of g are only imposed to minimize additional technical difficulties.
The main result of the paper is the following.

Theorem 1.2. Let g be as in (1.6) and let U± be the upper and lower
values of the stochastic dynamic game as in Definition 1.1. Then

U+ ≡ U− on Rn × [0, T ]

and U := U+ ≡ U− is the unique viscosity solution to (1.5). In partic-
ular, U(x, t) is the fair game value of the option.

Theorem 1.2 can be compared to the well known fact that, after
changing to log-returns, the arbitrage free price of a simple European
contract in the original Black-Scholes model is the unique solution to
the Cauchy problem for a second order uniformly parabolic equation
(heat equation). We emphasize that our fair value makes no reference
to, and is different from, classical concepts of arbitrage free pricing.
It is an interesting area of future research to understand, for example,
notions of arbitrage free pricing in the context of the stochastic dynamic
games considered in this paper. Furthermore, while this paper mainly
is of theoretical nature, an interesting future project is to study (1.5)
from a numerical point of view.

Example 1.3. Consider g : Rn → R defined by

g(x1, ..., xn) = max{K − w1e
x1 − ....− wnexn , 0} (1.7)

where w1 + ....+wn = 1, wi ≥ 0, and where K, the strike, is a positive
real number. Then g represents the pay-off of a put option written on
the index w1S1(T )+ ....+wnSn(T ) = w1e

x1 + ....+wne
xn with strike K.

Obviously g satisfies (1.6) for some L < ∞. We note that in general
the Lipschitz regularity is a feature of many commonly traded financial
derivatives.

1.4. Brief outline of the proof of Theorem 1.2. The complexity
in proving Theorem 1.2 stems from the unboundedness of controls and
strategies as well as from the potential degeneracy of the underlying
dynamics. To overcome the unboundedness of the action sets we first
approximate the original stochastic differential game by a sequence of
games with bounded controls ACm and bounded strategies Sm where
the bounds tend to ∞ as m→∞. The upper and lower values of the
associated stochastic dynamic games are defined analogously as for the
unbounded controls game above, i.e.

U+
m(x, t) = sup

ρ+∈Sm
inf

A−∈ACm
J (x,t)(ρ+(A−), A−),
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U−m(x, t) = inf
ρ−∈Sm

sup
A+∈ACm

J (x,t)(A+, ρ−(A+)),

where J (x,t) is given in (1.3). The upper and lower values are unique.
An important step is to connect the value functions to viscosity solu-
tions to the following terminal value problems involving Bellman-Isaacs
type equations:

∂tu−H+
m(u,Du,D2u) = 0 in Rn × (0, T ),

u(x, T ) = g(x) on Rn, (1.8)

∂tu−H−m(u,Du,D2u) = 0 in Rn × (0, T ),

u(x, T ) = g(x) on Rn. (1.9)

The operators H±m are introduced later and we here simply note that
the equations in (1.8), (1.9), are non-linear parabolic equations and
these equations are the relevant Bellman-Isaacs equations associated
to our problem in the case of bounded controls. In Section 2 we briefly
discuss comparison principles, existence and uniqueness of viscosity
solutions to (1.8), (1.9). The comparison and uniqueness follows along
the lines of Giga, Goto, Ishii and Sato, see [GGIS91], by using doubling
of variables as well as the theorem of sums. Existence is established
by the construction of appropriate barriers and by the use of Perron’s
method.

In Lemma 3.1, we prove that the unique solutions to (1.8), (1.9), u±m,
satisfy

u+
m = U+

m, u
−
m = U−m. (1.10)

In other words, the unique solutions to stated terminal value problems
produce the upper and lower values of the associated stochastic games.
The proof uses Ito’s formula and estimates for stochastic differential
equations.

To continue, we prove in Lemma 5.1 that

H±m → −F as m→∞.
To complete the proof of Theorem 1.2, a key step is to prove that there
exists m0 ∈ {1, 2, . . .} such that the families

{u±m : m ≥ m0}
are equicontinuous (Lemma 5.2). The proof of this fact is based on a
barrier argument. These results enable us to conclude by the Arzelà-
Ascoli theorem, see Lemma 5.3, that there exists a continuous function
u such that

u±m(x, t)→ u(x, t), (1.11)

and that the limit u is the unique solution to (1.5).
Finally, at the end of Section 5 we prove Theorem 1.2 by showing

that when the bounds on the controls increase, then a subsequence of
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corresponding value functions converge to a value function for the game
with unbounded controls. This together with (1.10) and (1.11) yields
the result.

Our approach is influenced by the works of Swiech [Swi96] as well as
Atar and Budhiraja [AB10]. A different approach to stochastic games is
due to Fleming and Souganidis [FS89], see also [BL08]. Indeed, the ap-
proach in [FS89] is based on establishing a dynamic programming prin-
ciple based on careful approximation arguments working directly with
the value functions. Then using this the authors prove that the value
functions also solve the associated Bellman-Isaacs equations. However,
our model contains degenerate diffusion and unbounded controls and
our approach relies on viscosity theory for non-linear and degenerate
partial differential equations already from the beginning. In particu-
lar, instead of establishing a dynamic programming principle for the
value function, we show, as explained above, that the unique viscosity
solution to the corresponding partial differential equation satisfies a
dynamic programming principle.

Our work is developed based on the recently established connections
between discrete in time tug-of-war games and infinity harmonic func-
tions [PSSW09], and tug-of-war with noise in the context of p-harmonic
functions [PS08]. We here also mention the approach based on nonlin-
ear mean value formulas developed in [MPR10] and [MPR12]. Contin-
uous in time stochastic differential games and infinity harmonic func-
tions were considered in [AB10], and [AB11]. The equation consider in
this paper, modulo the presence of the model related constants and a
change of the time direction, coincides with normalized p-Laplace oper-
ator considered in [MPR10] in connection with normalized p-parabolic
equations and tug-of-war games, see also [BG] and [Doe11]. The par-
abolic equation involving a normalized infinity Laplacian is studied
in [JK06].

2. Preliminaries

Recall that (Ω,F, {Fs},P) denotes a complete filtered probability
space with a right-continuous filtration supporting an (n+1)-dimensional
and {Fs}-adapted Brownian motion W = (W1, ...,Wn+1). We assume
that all components are standard and independent Brownian motions.

Definition 2.1 (Controls). Let

A := A(s) := (θ(s), d(s))

be a progressively measurable stochastic process on (Ω,F, {Fs},P) tak-
ing values in H = Sn−1 × [0,∞). We set

Λ := Λ(A) := sup
ω∈Ω

sup
s∈[0,T ]

d(s, ω) ∈ [0,∞].
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The control is said to be admissible provided that Λ < ∞, and we
denote the set of all admissible controls by AC.

Definition 2.2 (Strategies). A mapping

ρ : AC→ AC

is said to be a strategy if, for all A, Ã ∈ AC, with the notation

A′ := ρ(A), Ã′ := ρ(Ã),

and for every τ ∈ [0, T ], the following holds. If

P(A(s) = Ã(s) for a.e. s ∈ [0, τ ]) = 1 and Λ(A) = Λ(Ã)

then

P(A′(s) = Ã′(s) for a.e. s ∈ [0, τ ]) = 1 and Λ(A′) = Λ(Ã′).

Given ρ ∈ S, we set

Λ(ρ) := sup
A∈AC

Λ(ρ(A)) ∈ [0,∞].

The strategy is said to be admissible provided that Λ(ρ) <∞, and we
denote the set of all admissible strategies by S.

In general, and to this end, we in the following by controls and strate-
gies mean admissible controls and strategies in the sense of Definition
2.1 and Definition 2.2.

In the following we will approximate unbounded controls by bounded
ones.

Definition 2.3. For m ∈ {1, 2, . . .}, we define

ACm := {A ∈ AC : Λ(A) ≤ m},
Sm := {ρ ∈ S : Λ(ρ) ≤ m}. (2.1)

For convenience, we record the definitions of the game values already
described in the previous section.

Definition 2.4. The upper and lower values of the underlying sto-
chastic dynamic game, with controls in ACm and strategies in Sm, are
defined as

U+
m(x, t) = sup

ρ+∈Sm
inf

A−∈ACm
J (x,t)(ρ+(A−), A−),

U−m(x, t) = inf
ρ−∈Sm

sup
A+∈ACm

J (x,t)(A+, ρ−(A+)).
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2.1. Bellman-Isaacs equations with bounded action sets: vis-
cosity solutions. Let Σ = diag(σ1, . . . , σn) and let M(n) denote the
set of all symmetric n × n-dimensional matrices. Given a matrix,
or vector M , we let M ′ denote the transpose of M . We define Φ :
Sn−1 × Sn−1 × R+ × R+ × Rn ×M(n)→ R through

Φ(θ+, θ−, d+, d−, p,M)

=− 1

2
(θ+ − θ−)′ΣMΣ(θ+ − θ−)

− 1

2
trace(Σ2M)− (d+ + d−)(θ+ + θ−) · p− µ · p.

In the following we denote by LSC(Rn× [0, T ]) the set of lower semi-
continuous functions, i.e. all functions

f : (Rn × [0, T ])→ R ∪ {∞}
such that

lim inf
(y,s)→(x,t)

f(y, s) ≥ f(x, t).

Likewise, we denote by USC(Rn×[0, T ]) the set of upper semi-continuous
functions, i.e. all functions

f : (Rn × [0, T ])→ R ∪ {−∞}
such that

lim sup
(y,s)→(x,t)

f(y, s) ≤ f(x, t).

We define LSCl(Rn×[0, T ]) to consist of functions h ∈ LSC(Rn×[0, T ])
which satisfy the (linear) growth condition

|h(x, t)| ≤ c(1 + |x|) (2.2)

and for some c ∈ [1,∞). The space USCl(Rn × [0, T ]) is defined anal-
ogously. Furthermore,

Cl(Rn × [0, T ]) = USCl(Rn × [0, T ]) ∩ LSCl(Rn × [0, T ]).

In addition, ignoring t we define Cl(Rn) by analogy. Finally, C1,2(Rn×
[0, T ]) denotes the space of functions that are once continuously differ-
entiable in time and twice continuously differentiable in space.

Given m ∈ {1, 2, . . .}, we also introduce the notation

Hm = {(θ, d) ∈ H : d ≤ m},
and we define H̃+

m, H̃
−
m : Rn ×M(n)→ R through

H̃+
m(p,M) = sup

(θ−,d−)∈Hm
inf

(θ+,d+)∈Hm
Φ(θ+, θ−, d+, d−, p,M),

H̃−m(p,M) = inf
(θ+,d+)∈Hm

sup
(θ−,d−)∈Hm

Φ(θ+, θ−, d+, d−, p,M).

Also we define H+
m, H

−
m : R× Rn ×M(n)→ R through

H+
m(ξ, p,M) = H̃+

m(p,M) + rξ,
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H−m(ξ, p,M) = H̃−m(p,M) + rξ. (2.3)

Next we introduce terminal value problems involving Bellman-Isaacs
type equations associated to the game with bounded controls.

∂tu−H+
m(u,Du,D2u) = 0 in Rn × (0, T ),

u(x, T ) = g(x) on Rn, (2.4)

∂tu−H−m(u,Du,D2u) = 0 in Rn × (0, T ),

u(x, T ) = g(x) on Rn. (2.5)

A suitable concept of solution to the above equations is the viscosity
solution. Also recall our standing assumption (1.6) for g.

Definition 2.5. (a) A function ū+
m ∈ LSCl(Rn × [0, T ]) is a viscosity

supersolution to (2.4) if ū+
m(x, T ) ≥ g(x) for all x ∈ Rn and if

the following holds. If (x0, t0) ∈ Rn × (0, T ) and we have φ ∈
C1,2(Rn × [0, T ]) such that

(i) ū+
m(x0, t0) = φ(x0, t0),

(ii) ū+
m(x, t) > φ(x, t) for (x, t) 6= (x0, t0),

then

∂tφ(x0, t0) ≤ H+
m(ū+

m(x0, t0), Dφ(x0, t0), D2φ(x0, t0)).

(b) A function u+
m ∈ USCl(Rn × [0, T ]) is a viscosity subsolution to

(2.4) if u+
m(x, T ) ≤ g(x) for all x ∈ Rn and if the following holds. If

(x0, t0) ∈ Rn × (0, T ) and we have φ ∈ C1,2(Rn × [0, T ]) such that

(i) u+
m(x0, t0) = φ(x0, t0),

(ii) u+
m(x, t) < φ(x, t) for (x, t) 6= (x0, t0),

then

∂tφ(x0, t0) ≥ H+
m(u+

m(x0, t0), Dφ(x0, t0), D2φ(x0, t0)).

(c) If um is both a viscosity supersolution and a viscosity subsolution
to (2.4), then um is a viscosity solution to (2.4).

(d) The definitions for the equation (2.5) are analogous with H+
m, ū+

m,
u+
m replaced by H−m, ū−m, u−m.

Remark 2.6. Note that H+
m(u, p,X) is continuous with respect to u, p,X

also when p = 0. In addition, H+
m is degenerate elliptic in the sense

that

H+
m(u, p,X) ≤ H+

m(u, p, Y ) (2.6)

for any X ≥ Y . The analogous statements hold for H−m(u, p,X).
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2.2. Bellman-Isaacs equation with bounded action sets: exis-
tence and uniqueness of viscosity solutions.

Lemma 2.7. Let u+
m, ū

+
m ∈ Cl(Rn×[0, T ]) and u−m, ū

−
m ∈ Cl(Rn×[0, T ]),

be viscosity sub- and supersolutions to (2.4) and (2.5), respectively.
Then

u−m ≤ ū−m and u+
m ≤ ū+

m.

For the proof of the above comparison principle, see [GGIS91], in
particular, the argument starting from page 27. Similarly it follows
by a comparison with a large enough constant that solutions not only
satisfy the linear growth conditions but are bounded.

Lemma 2.8. Let y ∈ Rn and let L be the Lipschitz constant of g.
Consider 0 < ε� 1, and let

w̄(x, t) = g(y) +
A

ε2
(T − t) + 2L(|x− y|2 + ε)1/2,

w(x, t) = g(y)− A

ε2
(T − t)− 2L(|x− y|2 + ε)1/2.

Then we can choose A, independent of y, ε and m, so that w̄ and w
are viscosity super- and subsolutions to (2.4) as well as to (2.5).

Proof. We will only prove the result for (2.4) since the proof for (2.5)
is analogous. First we immediately see that

w(x, T ) ≤ g(x) ≤ w̄(x, T )

whenever x ∈ Rn. To prove that w̄ is a viscosity supersolution to (2.4)
we verify that

∂tw̄(x, t)−H+
m(w̄(x, t), Dw̄(x, t), D2w̄(x, t)) ≤ 0

whenever (x, t) ∈ Rn × [0, T ]. In the following, we split

Φ := Φ(θ+, θ−, d+, d−, Dw̄,D2w̄)

into

Φ = Φ1 + Φ2, (2.7)

where

Φ1 := −1

2
(θ+ − θ−)′ΣD2w̄Σ(θ+ − θ−)

− 1

2
trace(Σ2D2w̄)− µ ·Dw̄,

Φ2 := −(d+ + d−)(θ+ + θ−) ·Dw̄.
Then, by a straightforward calculation we see that

|Φ1| ≤ cL(|x− y|2 + ε)−1/2, (2.8)
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for all (θ−, d−) ∈ Hm, (θ+, d+) ∈ Hm, and for some c independent of
y, L, m and ε. Next, we focus on estimating

sup
(θ−,d−)∈Hm

inf
(θ+,d+)∈Hm

Φ2

= 2L sup
(θ−,d−)∈Hm

inf
(θ+,d+)∈Hm

(
− (d+ + d−)(θ+ + θ−) · (x− y)

(|x− y|2 + ε)1/2

)
.

We can without loss of generality assume that x 6= y. We then let
θ− = −(x− y)/|x− y| and note that

−(d+ + d−)(θ+ + θ−) · (x− y)

(|x− y|2 + ε)1/2
≥ 0.

Hence, combining this estimate and (2.8) with (2.7) we see that

w̄t(x, t)−H+
m(w̄(x, t), Dw̄(x, t), D2w̄(x, t))

≤ −A
ε2

+ cL(|x− y|2 + ε)−1/2

≤ −A
ε2

+ cLε−1/2

whenever (x, t) ∈ Rn × [0, T ]. Hence, if we let A = 2cL ≥ cLε3/2

then −Aε−2 + cLε−1/2 ≤ 0 and hence we can conclude that w̄ is a
supersolution to (2.4). The proof that w is a viscosity subsolution to
(2.4) is analogous. �

From now on we fix A so that w̄ and w are viscosity super- and
subsolutions, as stated in Lemma 2.8, to (2.4) as well as to (2.5).

Lemma 2.9. If u+
m and u−m are viscosity solutions to (2.4) and (2.5),

respectively, then

w ≤ u±m ≤ w̄.

Proof. The lemma is an immediate consequence of Lemma 2.8 and
Lemma 2.7. �

Lemma 2.10. There exist unique viscosity solutions u+
m and u−m to

(2.4) and (2.5), respectively.

The proof of this result can be found in [Gig06] and it is based on the
Perron’s method where one constructs the so called upper and lower
Perron solution by taking inf / sup over the suitable super/subsolutions.
That the constructed solutions assume the correct terminal data can
then be proved by using the above barriers.

3. Solving the stochastic dynamic game
with bounded action sets

The purpose of the section is to prove the following theorem.



14 K. NYSTRÖM, M. PARVIAINEN

Lemma 3.1. Let u+
m and u−m be the unique solutions to (2.4) and (2.5),

respectively, ensured by Lemma 2.10. Then

u+
m(x, t) = U+

m(x, t) := sup
ρ+∈Sm

inf
A−∈ACm

J (x,t)(ρ+(A−), A−),

u−m(x, t) = U−m(x, t) := inf
ρ−∈Sm

sup
A+∈ACm

J (x,t)(A+, ρ−(A+)),

whenever (x, t) ∈ Rn × [0, T ].

3.1. Proof of Lemma 3.1 assuming additional regularity on u±m.
We here prove Lemma 3.1 assuming smoothness on u+

m and u−m.

Lemma 3.2. Let u+
m and u−m be the unique solutions to (2.4) and

(2.5), respectively, ensured by Lemma 2.10. Assume, in addition, that
u±m, ∂tu

±
m, Du

±
m, D

2u±m are Lipschitz continuous in Rn × [0, T ). Then
Lemma 3.1 holds.

Proof. The proof is based on the connection between solutions and
value functions provided by the Ito formula, in connection with suitable
discretized controls chosen based on the solution. The discretization er-
ror can then be estimated by utilizing the smoothness assumptions. At
the end, we pass to a limit with the discretization parameter. We only
supply the proof in the case of u−m, the proof for u+

m being analogous.
Given k ∈ {1, 2, . . .} and (x, t) ∈ Rn × [0, T ], we can choose, since

u−m is a solution to (2.5), a control (θ+
0 , d

+
0 ) ∈ Hm such that

sup
(θ−,d−)∈Hm

{
Φ(θ+

0 , θ
−, d+

0 , d
−, Du−m(x, t), D2u−m(x, t)) + ru−m(x, t)

}

≤ ∂tu
−
m(x, t) + k−1.

(3.1)

Based on (θ+
0 , d

+
0 ) = (θ+

0,1, ...., θ
+
0,n, d

+
0 ) and an arbitrary, but fixed, con-

trol (θ−, d−) ∈ ACm, we let X0(s) := X0,(x,t)(s) be defined as in (1.2)
assuming also the initial condition X0(t) = x. In the following we let

ΦX
0 (s) : = Φ(θ+

0 , θ
−(s), d+

0 , d
−(s), Du−m(X0(s), s), D2u−m(X0(s), s)),

Φx
0(s) : = Φ(θ+

0 , θ
−(s), d+

0 , d
−(s), Du−m(x, s), D2u−m(x, s)).

Since u−m, ∂tu
−
m, Du

−
m, D

2u−m are Lipschitz continuous in Rn × [0, T ) we
can apply the Ito formula to u−m(X0(s), s) and we see that

du−m(X0(s), s) = ∂tu
−
m(X0(s), s)ds+

n∑

i=1

∂xiu
−
m(X0(s), s)dX0

i (s)

+
1

2

n∑

i,j=1

∂xixju
−
m(X0(s), s) dX0

i (s) dX0
j (s)

=(∂tu
−
m(X0(s), s)− ΦX

0 (s))ds

+
n∑

i=1

∂xiu
−
m(X0(s), s)(σidWi(s) + σi(θ

+
0,i − θ−i (s))dWn+1(s)).
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Using this we have

d(e−rsu−m(X0(s), s))

=e−rs(∂tu
−
m(X0(s), s)− ΦX

0 (s)− ru−m(X0(s), s))ds

+ e−rs
n∑

i=1

∂xiu
−
m(X0(s), s)(σidWi(s) + σi(θ

+
0,i − θ−i (s))dWn+1(s)).

Hence, if we let ∆t = (T − t)/k, then

E[e−r(t+∆t)u−m(X0(t+ ∆t), t+ ∆t))− e−rtu−m(X0(t), t)]

= E
[∫ t+∆t

t

e−rs(∂tu
−
m(X0(s), s)− ΦX

0 (s)− ru−m(X0(s), s))ds

]
,

and

u−m(x, t) = E[e−r∆tu−m(X0(t+ ∆t), t+ ∆t)] (3.2)

− E
[∫ t+∆t

t

e−r(s−t)(∂tu
−
m(X0(s), s)− ΦX

0 (s)− ru−m(X0(s), s))ds

]
.

We let

I1 = −E
[∫ t+∆t

t

e−r(s−t)(∂tu
−
m(X0(s), s)− ∂tu−m(x, t))ds

]
,

I2 = −E
[∫ t+∆t

t

e−r(s−t)(Φx
0(t)− ΦX

0 (s))ds

]
,

I3 = −E
[∫ t+∆t

t

e−r(s−t)r(u−m(X0(t), t))− u−m(X0(s), s))ds

]
.

(3.3)

Then, using this notation we observe that

u−m(x, t)

= E[e−r∆tu−m(X0(t+ ∆t), t+ ∆t)] + I1 + I2 + I3

− E
[∫ t+∆t

t

e−r(s−t)
(
∂tu
−
m(x, t)− Φx

0(t)− ru−m(x, t)
)
ds

]
.

(3.4)

Next, using (3.1) we see that

−E
[∫ t+∆t

t

e−r(s−t)
(
∂tu
−
m(x, t)− Φx

0(t)− ru−m(x, t)
)
ds

]

≤ k−1∆t.

(3.5)

Furthermore, by Lipschitz continuity of u−m, ∂tu
−
m, Du

−
m, D

2u−m we can
conclude that

|I1|+ |I2|+ |I3| ≤ cE
[∫ t+∆t

t

(|X0(s)− x|+ ∆t)ds

]

≤ c(∆t)2 + cE
[∫ t+∆t

t

|X0(s)− x|ds
] (3.6)
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for some generic constant c. To estimate the expectation in the previous
estimate we will have to use the equation satisfied by X0(s). Indeed,
recall that

X0
i (s)− xi =

∫ s

t

(
µi + (d+

1,i + d−i (τ))(θ+
0,i + θ−i (τ))

)
dτ

+

∫ s

t

σidWi(τ) +

∫ s

t

σi(θ
+
0,i − θ−i (τ))dWn+1(τ).

Hence, simply using the Hölder inequality and the Ito isometry we see
that

E
[∫ t+∆t

t

|X0(s)− x|ds
]

=

[∫ t+∆t

t

E[|X0(s)− x|]ds
]

≤
[∫ t+∆t

t

(E[|X0(s)− x|2])1/2ds

]

≤ c(∆t)3/2,

and where c is allowed to depend on m defining the class ACm. Com-
bining the above estimates, we conclude that

|I1|+ |I2|+ |I3| ≤ c((∆t)2 + (∆t)3/2) ≤ c(∆t)3/2.

Hence returning to (3.2), also recalling (3.3) and (3.4), we see that

u−m(x, t) ≤ E[e−r∆tu−m(X0,(x,t)(t+ ∆t), t+ ∆t)]

+c(∆t)3/2 + k−1∆t, (3.7)

where ∆t = (T − t)/k.
We will now use (3.7) in an iterative construction. Indeed, we let

tj = t+ j∆t for j = 0, ..., k − 1 and we first note, using (3.7), that for
j = 0 we have

u−m(x, t0) ≤ E[e−r∆tu−m(X0,(x,t0)(t1), t1)]

+c(∆t)3/2 + k−1∆t.

We next consider j = 1. Then, using that u−m is a solution to (2.5),
that Hm is a separable metric space, and uniform continuity, it fol-
lows that there exist a sequence {(θ+

1l, d
+
1l)}∞l=1 ⊂ Hm and a covering

{B(y1l, r1l)}∞l=1 of Rn, such that

sup
(θ−,d−)∈Hm

{
Φ(θ+

1l, θ
−, d+

1l, d
−, Du−m(y, t1), D2u−m(y, t1)) + ru−m(y, t1)

}

≤ ∂tu
−
m(y, t1) + k−1 whenever y ∈ B(y1l, r1l).

We let ψ1 : Rn → Hm be defined as

ψ1(y) = (ψθ1(y), ψd1(y)) := (θ+
1l, d

+
1l) if y ∈ B(y1l, r1l) \ ∪l−1

i=1B(y1i, r1i).

Furthermore, this time we let

Φy
1(s) := Φ(ψθ1(y), θ−, ψd1(y), d−, Du−m(y, t1), D2u−m(y, t1)).
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Then

sup
(θ−,d−)∈Hm

{
Φy

1(s) + ru−m(y, t1)

}
≤ ∂tu

−
m(y, t1) + k−1

whenever y ∈ Rn. We now let

(θ+
1 (s), d+

1 (s)) = (θ+
0 , d

+
0 ),

for s ∈ [t0, t1) = [t, t+ ∆t), and

(θ+
1 (s), d+

1 (s)) = (ψθ1(X0(t1)), ψd1((X0(t1))) (3.8)

for s ∈ [t1, t2) = [t+ ∆t, t+ 2∆t). In this way we have now constructed
a new control (θ+

1 , d
+
1 ) ∈ ACm. Next, with this (θ+

1 , d
+
1 ) ∈ ACm and

an arbitrary, but fixed, control (θ−, d−) ∈ ACm we construct X1(s) =
X1,(x,t)(s) for s ∈ [t0, t2) satisfying the initial condition X1(t) = x and
the dynamics in (1.2). By construction it follows that X1(s) = X0(s)
for s ∈ [t0, t1). We can now repeat the argument above to conclude
that

u−m(X0(t1), t1) ≤ E[e−r∆tu−m(X1(t2), t2)]

+c(∆t)3/2 + k−1∆t.

In particular, we see that

E[e−r∆tu−m(X0(t1), t1)] ≤ E[e−2r∆tu−m(X1(t2), t2)] (3.9)

+c(∆t)3/2 + k−1∆t.

Combining this with (3.7) we conclude

u−m(x, t) ≤ E[e−2r∆tu−m(X1(t2), t2)]

+c2(∆t)3/2 + 2k−1∆t.

By carefully iterating the above argument we get a sequence of controls
(θ+
j , d

+
j ) ∈ ACm, for j ∈ {0, 1, ..., k − 1}, and a sequence of processes

Xj(s) = Xj,(x,t)(s) based on the controls (θ+
j , d

+
j ) and an arbitrary, but

fixed, (θ−, d−) ∈ ACm. In particular, we have

u−m(x, t) ≤ E[e−jr∆tu−m(Xj(tj), tj)]

+cj(∆t)3/2 + jk−1∆t,

for all j ∈ {1, ..., k}. Now, applying this inequality with j = k we
conclude that

u−m(x, t) ≤ E[e−r(T−t)u−m(Xk(T ), T ))] + c(T − t)(∆t)1/2 + ∆t

= E[e−r(T−t)g(Xk(T ))] + c(T − t)(∆t)1/2 + ∆t, (3.10)

where we also used u−m(x, T ) = g(x) in the last line.
Summing up, given k ∈ {1, 2, . . .} and (x, t) ∈ Rn × [0, T ] we have

constructed controls (θ+
k , d

+
k ) such that for an arbitrary, but fixed,

(θ−, d−) ∈ ACm, (3.10) holds with Xk defined as in (1.2) based on
(θ+
k , d

+
k ), (θ−, d−), and Xk(t) = x.
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Next, consider ρ− ∈ Sm. Based on the above argument we now
construct (θ+

j , d
+
j ) and (θ−, d−)|[tj ,tj+1), j = 0, 1, ..., k − 1, using ρ−.

Indeed, given (x, t) ∈ Rn × [0, T ] we first let (θ+
0 , d

+
0 ) be as above and

set

(θ−, d−)|[t0,t1) := ρ−(θ+
0 , d

+
0 )|[t0,t1).

Then having defined (θ−, d−)|[t0,t1), we may define (θ+
1 , d

+
1 ) on [t0, t2) as

in (3.8). Then repeating the above argument, we set

(θ−, d−)|[t1,t2) := ρ−(θ+
1 , d

+
1 )|[t1,t2).

In particular, proceeding inductively, we can based on ρ− ∈ Sm con-
struct the controls (θ+

k , d
+
k ) and (θ−, d−) such that

u−m(x, t) ≤ E[e−r(T−t)g(Xk(T ))] + c(T − t)(∆t)1/2 + ∆t

≤ sup
A+∈ACm

J (x,t)(A+, ρ−(A+))

+c(T − t)(∆t)1/2 + ∆t,

for all k, ∆t = (T − t)/k, and for all ρ− ∈ Sm. In particular, letting
k →∞ we end up with

u−m(x, t) ≤ inf
ρ−∈Sm

sup
A+∈ACm

J (x,t)(A+, ρ−(A+)). (3.11)

To prove the opposite inequality, we note, by analogy that given
k ∈ {1, 2, . . .} and (x, t) ∈ Rn × [0, T ], we can choose, again since u−m
is a solution to (2.5), a control (θ−0 , d

−
0 ) ∈ Hm such that

inf
(θ+,d+)∈Hm

{
Φ(θ+, θ−0 , d

+, d−0 , Du
−
m(x, t), D2u−m(x, t)) + ru−m(x, t)

}

≥ ∂tu
−
m(x, t)− k−1.

Then, by arguing similarly as above, we deduce that we can construct
controls (θ−k , d

−
k ) such that for an arbitrary but fixed (θ+, d+) ∈ ACm,

u−m(x, t) ≥ E[e−r(T−t)u−m(Xk(T ), T ))]− c(T − t)(∆t)1/2 −∆t

= E[e−r(T−t)g(Xk(T ))]− c(T − t)(∆t)1/2 −∆t, (3.12)

with Xk defined as in (1.2) based on (θ−k , d
−
k ), (θ+, d+), and Xk(t) = x.

Next we define a strategy ρ−k ∈ Sm as follows. Given A+ = (θ+, d+) ∈
ACm we construct (θ−k , d

−
k ) as above and then simply let

ρ−k (A+) = ρ−k (θ+, d+) := (θ−k , d
−
k ).

Then, using (3.12) we see that

u−m(x, t) ≥ J (x,t)(A+, ρ−k (A+))− c(T − t)(∆t)1/2 −∆t,

and, hence

u−m(x, t) ≥ inf
ρ−∈Sm

J (x,t)(A+, ρ−(A+))

−c(T − t)(∆t)1/2 −∆t,
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for all k, ∆t = (T − t)/k, and for all A+ ∈ ACm. In particular, letting
k →∞ we can conclude that

u−m(x, t) ≥ inf
ρ−∈Sm

sup
A+∈ACm

J (x,t)(A+, ρ−(A+)).

Combining this with (3.11) we see that the proof of Lemma 3.2 for u−m
is complete. �

3.2. Proof of Lemma 3.1. In the following we only supply the proof
in the case of u−m in Rn × [0, T ], the proof for u+

m being analogous.
Given a large non-negative integer j we let Tj = T − 1

j
and Rn

j :=

Rn × [1
j
, Tj]. Given j fixed we in the following use, for ε > 0 small, the

sup-convolution

uε(x0, t0) := sup
(x,t)∈Rnj

{u−m(x, t)− (t0 − t)2 + (x0 − x)2

2ε
}

whenever (x0, t0) ∈ Rn
j . Then u−m(x0, t0) ≤ uε(x0, t0) whenever (x0, t0) ∈

Rn
j and uε is a semi-convex function, i.e. there exists a constant c > 0

such that uε(x, t) + c(|x|2 + t2) is convex. Furthermore, provided ε is
small enough,

H−m(x, t,Duε, D
2uε) ≤ ∂tuε(x, t) + ω(ε)

for a.e. (x, t) ∈ Rn
j and where ω(ε) is a bounded modulus which depends

on the continuity of u−m. For details and properties of sup-convolutions,
see for example [CIL92], [Ish95] and [Lin12].

Next, using the standing assumptions on g, see (1.6), and the com-
parison principle we see that 0 ≤ u−m(x, t) ≤ L for all (x, t) ∈ Rn×[0, T ].
Furthermore, using the boundedness of u−m it follows that the supremum
used in the definition of uε(x0, t0) is obtained at some point (x∗, t∗). In
particular,

0 ≤ u−m(x0, t0) ≤ uε(x0, t0) = u−m(x∗, t∗)− (t0 − t∗)2 + (x0 − x∗)2

2ε

≤ L− (t0 − t∗)2 + (x0 − x∗)2

2ε

and hence

√
(t0 − t∗)2 + (x0 − x∗)2 ≤

√
2Lε,

where we deduce a condition
√

2Lε < 1/j for ε.
Given δ > 0 and small we in the following let ηδ denote a standard

mollifier in Rn+1. Restricting δ � ((j − 1)−1 − j−1)/2 we see that
uδε(x, t) := uε ∗ ηδ(x, t), the convolution of uε and ηδ, is well-defined



20 K. NYSTRÖM, M. PARVIAINEN

whenever (x, t) ∈ Rn
j−1. Then, in particular

uδε → uε, uniformly on Rn
j−1,

Duδε → Duε, a.e. in Rn
j−1,

∂tu
δ
ε → ∂tuε, a.e. in Rn

j−1,

D2uδε → D2uε, a.e. in Rn
j−1.

The last statement is based on Alexandrov’s theorem, see for example
Section 6 of [EG92] or [JJ12]. Furthermore,

H−m(x, t,Duδε, D
2uδε) ≤ ∂tu

δ
ε(x, t) + ω(ε) + γδ(x, t),

a.e. in Rn
j−1 where γδ(x, t) → 0 as δ → 0, and γδ is uniformly contin-

uous (since it is a result of the standard convolution; the modulus of
continuity is not claimed to be uniform in δ) and bounded uniformly in
δ (recall uniform semiconvexity and uniform Lipschitz continuity of uδε
with respect to δ). Now, using that uδε, ∂tu

δ
ε, Du

δ
ε, D

2uδε are Lipschitz
continuous in Rn

j−1 we can argue as in the proof of Lemma 3.2 and
conclude that

uδε(x, t) ≤ inf
ρ−∈Sm

sup
A+∈ACm

E
[∫ Tj−1

t

e−r(s−t)hδε(X(s), s) ds

+ e−r(Tj−1−t)uδε(X(Tj−1), Tj−1)

] (3.13)

whenever (x, t) ∈ Rn
j−1 and where hδε := ω(ε) + γδ. Indeed, (3.1) now

reads as

sup
(θ−,d−)∈Hm

{
Φ(θ+

0 , θ
−, d+

0 , d
−, Duδε(x, t), D

2uδε(x, t)) + ruδε(x, t)

}

≤ ∂tu
δ
ε(x, t) + hδε(x, t) + k−1,

for (x, t) ∈ Rn
j−1, and thus we may estimate the second term on the

right hand side of (3.2) by using hδε(x, t). In particular, in (3.5), the
expression ∂tu

−
m(x, t) − Φx

0(t) − ru−m(x, t) may be replaced by hδε(x, t).
Using these observations and arguing as in the proof of Lemma 3.2 we
see that (3.9) now reads

E[e−r∆tuεδ(X
0(t1), t1)] ≤ E[e−2r∆tuεδ(X

1(t2), t2)]

− E[

∫ t2

t1

e−r(s−t)hδε(X
1(s), s) ds] + c(∆t)3/2 + k−1∆t+ c∆tρ(∆t),

where ∆t = (Tj−1 − t)/k, the modulus of continuity ρ in the last error
term depends on the modulus of continuity of hδε, and results from the
calculations similar to those following (3.6) except using ρ instead of
|·|. Next, iterating the above reasoning in time, along the lines of the
proof of Lemma 3.2, completes the argument. In particular, the last
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error term yields c(Tj−1− t)ρ((Tj−1− t)/k). Then, letting k →∞ gives
(3.13).

Next we want, for j fixed, to let δ → 0 and ε → 0 in (3.13). To do
this, recall that the underlying dynamics X is defined through the sto-
chastic differential equation in (1.2) and based on (uniformly) bounded
controls encoded through Sm and ACm. In particular, X solves an sde
with (uniformly) bounded coefficients. Using this we first observe, us-
ing a standard martingale argument, that given θ > 0, there exists
R = Rθ such that

P( sup
t≤s≤Tj−1

|X(s)| ≥ R) ≤ θ. (3.14)

Furthermore, given θ > 0 and R as above we choose Ωθ ⊂ BR := BR(0)
such that |Ωθ| < θ and such that

γδ → 0 uniformly in (BR(0) \ Ωθ)× [(j − 1)−1, Tj−1] as δ → 0.(3.15)

Given E ⊂ Rn we in the following let χE denote the indicator function
of E. Then, first using (3.14) we see that
∫ Tj−1

t

E[e−r(s−t)hδε(X(s), s)] ds

≤
∫ Tj

t

E[hδε(X(s), s)χBR(X(s))] +

∫ Tj

t

E[hδε(X(s), s)χBcR(X(s))] ds

≤ Iε,δ1 (θ) + Iε,δ2 (θ) + c(Tj−1 − t)θ
for some harmless constant independent of j, ε, δ, and θ. Here

Iε,δ1 (θ) :=

∫ Tj−1

t

E[hδε(X(s), s)χΩθ(X(s))],

Iε,δ2 (θ) :=

∫ Tj−1

t

E[hδε(X(s), s)χBR\Ωθ(X(s))] ds.

Now

Iε,δ1 (θ) ≤ c

∫ Tj−1

t

E[χΩθ(X(s))] ds ≤ c(Tj−1 − t)|Ωθ| (3.16)

and consequently

Iε,δ1 (θ) ≤ c(Tj−1 − t)θ
for some constant c independent of ε, δ, θ. Note that the estimate in
(3.16) is far from straightforward. Indeed, (3.16) is a fundamental es-
timate by Krylov and stated as Theorem 4 on p.66 in [Kry09]. It is
interesting to note that there is, at the core of Krylov’s proof of this
estimate, a Alexandrov-Bakelman-Pucci-type estimate for uniformly
parabolic equation, see Krylov [Kry76]. In particular, a short calcula-
tion shows that our dynamics satisfies the sufficient assumptions stated
in [Kry09] for the validity of the estimate in (3.16).
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Next we note that

Iε,δ2 (θ)→ 0 when we first let δ → 0, and then ε→ 0,

as we see from the fact that hδε = ω(ε) + γδ, (3.15), and that ω(ε)→ 0
as ε→ 0.

Taking the limits δ → 0 and ε → 0 in (3.13), we see by the above
that

u(x, t) ≤ inf
ρ−∈Sm

sup
A+∈ACm

E[e−r(Tj−1−t)u(X(Tj−1), Tj−1)],

whenever (x, t) ∈ Rn
j−1. Finally, using the barriers given by Lemma

2.9, and by arguing as at the end of the proof of Lemma 5.2 stated
below, we can then conclude by letting j →∞ that

u(x, t) ≤ inf
ρ−∈Sm

sup
A+∈ACm

E[e−r(T−t)g(X(T ))],

and this completes the proof of Lemma 3.1. 2

4. The limit equation ∂tu+ F (u,Du,D2u) = 0

We here start by introducing the relevant notion of viscosity super-
and subsolutions to (1.5).

Definition 4.1. (a) A function ū ∈ LSCl(Rn × [0, T ]) is a viscosity
supersolution to (1.5) if ū(x, T ) ≥ g(x) for all x ∈ Rn and if the
following holds. If (x0, t0) ∈ Rn × (0, T ) and we have φ ∈ C1,2(Rn ×
[0, T ]) such that

(i) ū(x0, t0) = φ(x0, t0),

(ii) ū(x, t) > φ(x, t) for (x, t) 6= (x0, t0),

then

0 ≥ ∂tφ(x0, t0) + F (ū(x0, t0), Dφ(x0, t0), D2φ(x0, t0)), (4.1)

whenever Dφ(x0, t0) 6= 0, and

0 ≥ ∂tφ(x0, t0) + lim inf
p→0

F (ū(x0, t0), p,D2φ(x0, t0)) (4.2)

whenever Dφ(x0, t0) = 0.
(b) A function u ∈ USCl(Rn × [0, T ]) is a viscosity subsolution to
(1.5) if u(x, T ) ≤ g(x) for all x ∈ Rn and if the following holds. If
(x0, t0) ∈ Rn × (0, T ) and we have φ ∈ C1,2(Rn × [0, T ]) such that

(i) u(x0, t0) = φ(x0, t0),

(ii) u(x, t) < φ(x, t) for (x, t) 6= (x0, t0),

then

0 ≤ ∂tφ(x0, t0) + F (u(x0, t0), Dφ(x0, t0), D2φ(x0, t0)) (4.3)

whenever Dφ(x0, t0) 6= 0, and

0 ≤ ∂tφ(x0, t0) + lim sup
p→0

F (u(x0, t0), p,D2φ(x0, t0)), (4.4)
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whenever Dφ(x0, t0) = 0.
(c) If u is both a viscosity supersolution and a viscosity subsolution to
(1.5), then u is a viscosity solution to (1.5).

We let
F ∗ := lim sup

p→0
F and F∗ := lim inf

p→0
F.

Using this notation we see that (4.1) and (4.2) can be written at once
as

0 ≥ ∂tφ(x0, t0) + F∗(ū(x0, t0), Dφ(x0, t0), D2φ(x0, t0)),

and (4.3) and (4.4) as

0 ≤ ∂tφ(x0, t0) + F ∗(u(x0, t0), Dφ(x0, t0), D2φ(x0, t0)).

Similarly to Lemma 2.7 the following lemma also follows from [GGIS91].

Lemma 4.2. Let u, ū ∈ Cl(Rn × [0, T ]) be viscosity sub- and superso-
lutions to (1.5) in the sense of Definition 4.1. Then

u(x, t) ≤ ū(x, t),

whenever (x, t) ∈ Rn × [0, T ].

Furthermore, arguing as in Lemma 2.8 and Lemma 2.9 we see that
we can construct barriers to (1.5), use them for comparison, and prove
the following lemma.

Lemma 4.3. Let y ∈ Rn and let L be the Lipschitz constant of g.
Consider 0 < ε� 1, and let

w̄(x, t) = g(y) +
A

ε2
(T − t) + 2L(|x− y|2 + ε)1/2,

w(x, t) = g(y)− A

ε2
(T − t)− 2L(|x− y|2 + ε)1/2.

Then we can choose A, independent of y, ε and m, so that w̄ and w
are viscosity super- and subsolutions to (1.5). Consequently, for such
A, and if u is a viscosity solution to (1.5), we have

w ≤ u ≤ w̄.

Below we always choose, when applying w̄ and w, A so that Lemma
4.3 holds.

Theorem 4.4. There exists a unique viscosity solution u to (1.5).

The uniqueness part of Theorem 4.4 follows from Lemma 4.2. The
existence part of Theorem 4.4 again follows from Perron’s method also
using Lemma 4.3 as discussed after Lemma 2.10.

Next, using a modification of the techniques [CGG91], [ES91], see
also [JK06] and [KMP12], we prove the following lemma which states
that the set of test functions used in Definition 4.1 can be reduced. We
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consider continuous sub-/supersolutions since later we only need this
result for solutions.

Lemma 4.5. Let u ∈ Cl(Rn×[0, T ]). Then to test whether or not u is a
viscosity super- or subsolution at (x0, t0) in the sense of Definition 4.1,
it is enough to consider test functions φ ∈ C1,2(Rn × [0, T ]) such that
either

(i) Dφ(x0, t0) 6= 0 or

(ii) Dφ(x0, t0) = 0 and D2φ(x0, t0) = 0.

Proof. We here only prove the lemma in the context of subsolutions.
The proof is by contradiction. Indeed, assume that there exists a func-
tion u ∈ Cl(Rn × [0, T ]), which fails to be a subsolution at (x0, t0)
in the sense of Definition 4.1 even though the following holds. If
(x0, t0) ∈ Rn × (0, T ) and φ ∈ C1,2(Rn × [0, T ]) are such that

(i) u(x0, t0) = φ(x0, t0),

(ii) u(x, t) < φ(x, t) for (x, t) 6= (x0, t0),

then

0 ≤ ∂tφ(x0, t0) + F ∗(u(x0, t0), Dφ(x0, t0), D2φ(x0, t0)), (4.5)

whenever

(i) Dφ(x0, t0) 6= 0 or

(ii) Dφ(x0, t0) = 0 and D2φ(x0, t0) = 0.

Now, since u is assumed to fail to be a subsolution we see that there
must also exist a test function ϕ touching from above, and ε > 0, such
that

0 > ∂tϕ(x0, t0) + F ∗(u(x0, t0), Dϕ(x0, t0), D2ϕ(x0, t0)) + ε (4.6)

and such that

Dϕ(x0, t0) = 0 and D2ϕ(x0, t0) 6= 0.

In addition, we may assume that u − ϕ has a strict global maximum
at (x0, t0). Let

w(x, t, y, s) := wj(x, t, y, s) = u(x, t)− ϕ(y, s)−Ψj(x, t, y, s), (4.7)

where

Ψ(x, t, y, s) := Ψj(x, t, y, s) =
j

4
|x− y|4 +

j

2
(t− s)2.

By comparison and the structure of the barriers in Lemma 4.3, we see
that there exists (xj, tj, yj, sj) ∈ Rn × (0, T )× Rn × (0, T ) such that

w(xj, tj, yj, sj) = sup
(x,t,y,s)∈Rn×[0,T ]×Rn×[0,T ]

w(x, t, y, s). (4.8)

Furthermore,

(xj, tj, yj, sj)→ (x0, t0, x0, t0) as j →∞.
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We now consider two cases.
Case 1: there exists an infinite sequence of j:s such that xj = yj for
each such j.
Case 2: there exists an j0 ∈ {1, 2, . . .} such that xj 6= yj for all j,
j > j0.

We first analyze Case 1 and we let xj = yj. Then, by construction,

u(x, t) ≤ u(xj, tj) + ϕ(y, s)− ϕ(yj, sj)

+Ψ(x, t, y, s)−Ψ(xj, tj, yj, sj),

whenever (x, t, y, s) ∈ Rn × [0, T ]× Rn × [0, T ]. In particular,

u(x, t) ≤ u(xj, tj) + Ψ(x, t, yj, sj)−Ψ(xj, tj, yj, sj) (4.9)

whenever (x, t) ∈ Rn × (0, T ). Moreover, since xj = yj, we observe
that DxΨ(xj, tj, yj, sj) = 0, D2

xxΨ(xj, tj, yj, sj) = 0, and thus we can
conclude that the function on the right in (4.9) is an admissible test
function at (xj, tj) for the conclusion in (4.5). For brevity, we drop the
arguments (xj, tj, yj, sj) in Ψ and its derivatives in the displays below.
We have

0 ≤ Ψt + F ∗(u(xj, tj), DxΨ, D
2
xxΨ).

Then observe that 0 = −D2
yyΨ ≤ D2ϕ(yj, sj), 0 = −DyΨ = Dϕ(yj, sj)

and −Ψs = ∂tϕ(yj, sj), since (y, s) 7→ ϕ(y, s)+Ψ(xj, tj, y, s) has a local
minimum at (yj, sj) by (4.8). By these facts, ellipticity of F ∗, and (4.6)
it follows that

Ψs = −∂tϕ(yj, sj) > F ∗(u(yj, sj),−DyΨ,−D2
yyΨ) +

ε

2
.

Combining the previous two displays, we obtain

r(u(xj, tj)− u(yj, sj)) <
(tj − sj)− (tj − sj)

ε
− ε

2
= −ε

2

which is a a contradiction for large enough j since u is continuous.
We next analyze Case 2. In this case, using the Theorem of sums,

see [CIL92], we see that there exist (Ψt, DxΨ, X) ∈ P
2,+
u(x, t) and

(−Ψs,−DyΨ,−Y ) ∈ P
2,−
ϕ(y, t) such that X ≤ −Y . In particular,

since DxΨ 6= 0 it follows that

0 ≤ Ψt + F ∗(u(xj, tj), DxΨ, X)

0 > −Ψs + F ∗(u(yj, sj),−DyΨ,−Y ) +
ε

2

(4.10)

where the second inequality follows from (4.6) by continuity. Thus

Ψt + Ψs > −F ∗(u(xj, tj), DxΨ, X) + F ∗(u(yj, sj),−DyΨ,−Y ) +
ε

2

≥ ε

2
+ r(u(yj, sj)− u(xj, tj)).
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Finally, observing that Ψt = −Ψs we see that the last display implies
that

0 ≥ ε

2
+ r(u(yj, sj)− u(xj, tj)).

and this now produces a contradiction for j large enough. The proof
for a supersolution is similar. �

5. Going to the limit: general action sets as m→∞
In the following we will use the following lemma.

Lemma 5.1. Let ξm, ξ ∈ R, pm, p ∈ Rn \{0}, Mm,M ∈M(n), be such
that

ξm → ξ, pm → p, and Mm →M,

as m→∞. Then

H±m(ξm, pm,Mm)→ −F (ξ, p,M).

Proof. We here only prove the statement forH−m, the proof forH+
m being

analogous. Furthermore, to prove thatH−m(ξm, pm,Mm)→ −F (ξ, p,M)
it is sufficient to consider those terms in H−m which are affected by
inf(θ+,d+)∈Hm sup(θ−,d−)∈Hm . In particular, we focus on

Φ̃(θ+, θ−, d+, d−, pm,Mm) := −1

2
(θ+ − θ−)′ΣMmΣ(θ+ − θ−)

−(d+ + d−)(θ+ + θ−) · pm.
Setting

Φ̃m := inf
(θ+,d+)∈Hm

sup
(θ−,d−)∈Hm

Φ̃,

we observe that

Φ̃m ≤ sup
(θ−,d−)∈Hm

(
− 1

2
(pm/|pm| − θ−)′ΣMmΣ(pm/|pm| − θ−)

− d−(pm/|pm|+ θ−) · pm
)
,

and that (pm/|pm| + θ−) · pm ≥ 0 whenever θ− ∈ Sn−1. In particular,
we conclude that Φ̃m is bounded from above as m→∞.

Using that the set {(θ+, d+) ∈ Hm} is compact, we see that there
exists a (θ+

m, d
+
m) realizing the infimum in the definition of Φ̃m and we

next prove that there exists, given ε > 0, a m0 = m0(ε) such that

|pm| − ε ≤ θ+
m · pm ≤ |pm| whenever m ≥ m0. (5.1)

Obviously we only have to establish the lower bound and to do this we
assume, on the contrary, that there exists ε > 0 and mj → ∞, such
that

θ+
mj
· pmj ≤ |pmj | − ε as j →∞. (5.2)
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If this is the case then

Φ̃mj = sup
(θ−,d−)∈Hmj

(
−1

2
(θ+
mj
− θ−)′ΣMmjΣ(θ+

mj
− θ−)

− (d+
mj

+ d−)(θ+
mj

+ θ−) · pmj
)

≥ −c− (d+
mj

+mj)(θ
+
mj
− pmj/|pmj |) · pmj

≥ −c+ (d+
mj

+mj)ε

(5.3)

since (−pmj/|pmj |,mj) ∈ Hmj and for some harmless constant c. How-

ever, (5.3) contradicts the boundedness of Φ̃mj as mj →∞, hence (5.2)
must be false and (5.1) must hold.

Using (5.1) we see that

θ+
m → p/|p| as m→∞. (5.4)

Furthermore, using that

Φ̃m ≥ −
1

2
(θ+
m + pm/|pm|)′ΣMmΣ(θ+

m + pm/|pm|)
− (d+

m +m)(θ+
m − pm/|pm|) · pm

≥ −1

2
(θ+
m + pm/|pm|)′ΣMmΣ(θ+

m + pm/|pm|),

in combination with (5.4), we have that

lim inf
m→∞

Φ̃m ≥ −2(p/|p|)′ΣMΣp/|p|. (5.5)

This yields, recalling the rest of the terms in the definition of H−m, that

lim inf
m→∞

H−m(ξm, pm,Mm) ≥ −F (ξ, p,M).

To complete the proof it only remains to prove that

lim sup
m→∞

H−m(ξm, pm,Mm) ≤ −F (ξ, p,M). (5.6)

To do this we first note, again using the definition of (θ+
m, d

+
m), that

Φ̃m = sup
(θ−,d−)∈Hm

Φ̃(θ+
m, θ

−, d+
m, d

−, pm,Mm)

≤ sup
(θ−,d−)∈Hm

Φ̃(pm/|pm|, θ−,m, d−, pm,Mm).

Furthermore, again using compactness we see that we can choose (θ−m, d
−
m)

realizing the supremum in the last display. Hence,

Φ̃m ≤ −1

2
(pm/|pm| − θ−m)′ΣMmΣ(pm/|pm| − θ−m)

−(m+ d−m)(pm/|pm|+ θ−m) · pm.
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Using this we deduce that θ−m → −p/|p|, since otherwise the above
estimate would imply lim infm→∞ Φ̃m = −∞ contradicting (5.5). Fur-
thermore,

Φ̃m ≤−
1

2
(pm/|pm| − θ−m)′ΣMmΣ(pm/|pm| − θ−m)

− (m+ d−m)(pm/|pm|+ θ−m) · pm

≤− 1

2
(pm/|pm| − θ−m)′ΣMmΣ(pm/|pm| − θ−m),

and taking lim supm→∞ we see that (5.6) holds. This completes the
proof of the lemma. �
Lemma 5.2. Let u+

m and u−m be the unique solutions to (2.4) and (2.5),
respectively, ensured by Lemma 2.10. Then there exists m0 ∈ {1, 2, . . .}
such that the families

{u±m : m ≥ m0}
are equicontinuous on Rn × [0, T ].

Proof. We here only prove that {u+
m : m ≥ m0} is equicontinuous on

Rn × [0, T ], the proof for {u−m : m ≥ m0} being analogous. Using
Lemma 3.1 we have that

u+
m(x, t) = U+

m(x, t) := sup
ρ+∈Sm

inf
A−∈ACm

J (x,t)(ρ+(A−), A−),

whenever (x, t) ∈ Rn × [0, T ] and an observation is that we can use
both a stochastic as well as a pde point of view to prove the lemma.
Furthermore, the processes underlying the stochastic formulation, see
(1.2), all end at T . Suppose that we consider two games, one starting
from (x1, t1) and one starting from (x2, t2) with t1 < t2. We want
to show, uniformly in m, that |u+

m(x1, t1) − u+
m(x2, t2)| can be made

arbitrary small by considering (x1, t1) and (x2, t2) sufficiently close.
Since the controls and strategies can always be ’copied’ for the processes
starting from (x1, t1), (x2, t2), cf. p. 105 [PS08], and by considering
same samples, this is possible since we use space and time independent
Brownian motions, we see that it is enough to consider a situation
(x1, t1) and (x2, T ) with t1 < T . In particular, we now want to prove
that given δ > 0 there exists η > 0 such that

|u+
m(x1, t1)− u+

m(x2, T )| = |u+
m(x1, t1)− g(x2)| ≤ δ

whenever |x1 − x2|+ T − t1 ≤ η. Recall the barriers

w̄(x, t) = g(x2) +
A

ε2
(T − t) + 2M(|x− x2|2 + ε)1/2,

w(x, t) = g(x2)− A

ε2
(T − t)− 2M(|x− x2|2 + ε)1/2.

Using Lemma 2.9 we have

w ≤ u+
m ≤ w̄.
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In particular,

|u+
m(x1, t)− g(x2)| ≤ A

ε2
(T − t) + 2M(|x1 − x2|2 + ε)1/2.

Let |x1 − x2|+ T − t1 ≤ ε5/2. Then, for ε < 1

|u+
m(x1, t1)− g(x2)| ≤ Aε1/2 + 4Mε1/2 ≤ (A+ 4M)ε1/2,

and we conclude, by choosing ε small enough. This completes the
proof. �
Lemma 5.3. Let u+

m and u−m be the unique solutions to (2.4) and (2.5),
respectively. Then

u±m(x, t)→ u(x, t),

for all (x, t) ∈ Rn × [0, T ], where u is the continuous, unique viscosity
solution to (1.5).

Proof. We again only prove the result for u+
m, the proof for u−m being

similar. We first recall that the existence of u+
m is ensured by Lemma

2.10. Furthermore, by comparison with a supersolution L, we see that
the sequence {u+

m} is uniformly bounded in Rn× [0, T ]. Using this and
Lemma 5.2, we can first conclude, using the Arzelà-Ascoli theorem,
that there exists u, continuous on Rn × [0, T ], such that

u+
m(x, t)→ u(x, t) as m→∞. (5.7)

We next prove that u is a viscosity subsolution in Rn×[0, T ) to (1.5).
To do this, let φ ∈ C2 touch u strictly from above at (x0, t0). Then,
using the uniform convergence it follows that there exists (xm, tm) →
(x0, t0) such that

u+
m − φ

has a strict max at (xm, tm). Hence

∂tφ(xm, tm) ≥ H+
m(u+

m(xm, tm), Dφ(xm, tm), D2φ(xm, tm)). (5.8)

Note that, as m → ∞, ∂tφ(xm, tm) → ∂tφ(x0, t0), u+
m(xm, tm) →

u(x0, t0), Dφ(xm, tm) → Dφ(x0, t0), D2φ(xm, tm) → D2φ(x0, t0), and
we want to pass to the limit in (5.8). Suppose first that Dφ(x0, t0) 6= 0.
Then, using Lemma 5.1 we see that

H+
m(u+

m(xm, tm),Dφ(xm, tm), D2φ(xm, tm))

→ −F (u(x0, t0), Dφ(x0, t0), D2φ(x0, t0))

as m→∞. Next, suppose that Dφ(x0, t0) = 0. In this case we can, by
Lemma 4.5, also assume, without loss of generality, that D2φ(x0, t0) =
0. But in this case

H+
m(u+

m(xm, tm),Dφ(xm, tm), D2φ(xm, tm))

→ −F ∗(u(x0, t0), 0, 0).
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In particular, in either case we can conclude that

∂tφ(x0, t0) ≥ −F ∗(u(x0, t0), Dφ(x0, t0), D2φ(x0, t0)). (5.9)

and hence u is a continuous viscosity subsolution to (1.5). The proof
of the result that u is also a supersolution to (1.5) is similar. We omit
further details. �

We are in position to prove the main result of the paper, Theorem
1.2, which states that the game with unbounded controls has the value
and that the value function

u = U+(x, t) = sup
ρ+∈S

inf
A−∈AC

J (x,t)(ρ+(A−), A−)

= inf
ρ−∈S

sup
A+∈AC

J (x,t)(A+, ρ−(A+)) = U−(x, t)

is the unique solution u to (1.5).

Proof of Theorem 1.2. We will here only prove that u = U− since the
proof is analogously in the other case. Recall that Lemma 3.1 states
that

u−m(x, t) = U−m(x, t) = inf
ρ−∈Sm

sup
A+∈ACm

J (x,t)(A+, ρ−(A+)).

Furthermore, using Lemma 5.3 we have

u−m(x, t)→ u(x, t),

where u is the solution to (1.5). Thus it suffices to prove that

U−m(x, t)→ U−(x, t) as m→∞. (5.10)

To prove (5.10) we first note that

U−(x, t) = inf
ρ−∈S

sup
A+∈AC

J (x,t)(A+, ρ−(A+))

≥ inf
ρ−∈S

sup
A+∈ACm

J (x,t)(A+, ρ−(A+)).

In particular, given ε > 0, using that U−(x, t) is finite by our assump-
tions on g and that S = ∪mSm, we see that there exists m0 = m0(ε)
such that

U−(x, t) ≥ inf
ρ−∈S

sup
A+∈ACm

J (x,t)(A+, ρ−(A+)) ≥ U−m(x, t)− ε

whenever m ≥ m0. We can therefore conclude that

U−(x, t) ≥ lim sup
m→∞

U−m(x, t).

To complete the proof of (5.10) it hence only remains to prove that

U−(x, t) ≤ lim inf
m→∞

U−m(x, t). (5.11)

To prove (5.11), we first fix a strategy which estimates the infimum
when the supremum is taken over the controls ACk. Then by choosing
k large enough, we can closely estimate the original supremum taken
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over AC by a supremum taken over ACk. To write down the details,
we recall that

ACk := {A ∈ AC : Λ(A) ≤ k},
Sm := {ρ ∈ S : Λ(ρ) ≤ m},

for k = 1, 2, . . .. Fix ε > 0. For each k, we choose ρ−km ∈ Sm such that

sup
A+∈ACk

J (x,t)(A+, ρ−km(A+))

≤ inf
ρ−∈Sm

sup
A+∈ACk

J (x,t)(A+, ρ−(A+)) + ε. (5.12)

Next we define

ρ−m(A+) := ρ−km(A+) whenever A+ ∈ ACk \ACk−1,

and we set AC0 = ∅ in order to get started. Now, using that AC =
∪kACk we have, for k ≥ kε sufficiently large, that

U−(x, t) ≤ sup
A+∈AC

J (x,t)(A+, ρ−m(A+))

≤ sup
A+∈ACk

J (x,t)(A+, ρ−m(A+)) + ε

≤ inf
ρ−∈Sm

sup
A+∈ACk

J (x,t)(A+, ρ−(A+)) + 2ε

where we on the last line have used (5.12). Assuming m ≥ kε, we may
choose k = m in the last display and hence we can conclude that given
ε > 0 there exists m0 = m0(ε) such that if m ≥ m0, then

U−(x, t) ≤ inf
ρ−∈Sm

sup
A+∈ACm

J (x,t)(A+, ρ−(A+)) + 2ε

= U−m(x, t) + 2ε,

and this proves (5.11). �
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