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NONLOCAL HARNACK INEQUALITIES

AGNESE DI CASTRO, TUOMO KUUSI, AND GIAMPIERO PALATUCCI

Abstract. We state and prove a general Harnack inequality for minimizers
of nonlocal, possibly degenerate, integro-differential operators, whose model
is the fractional p-Laplacian.

1. Introduction

In the present paper we deal with an extended class of operators, which include, as a

particular case, some fractional powers of the Laplacian. Precisely, let Ω be a bounded

domain and take g in the fractional Sobolev spaces W s,p(Rn), for any s ∈ (0, 1) and

any p > 1. We will prove general Harnack inequalities for the weak solutions u to the

following class of integro-differential problems

(1.1)

{
Lu = 0 in Ω,

u = g in Rn \ Ω,

where the operator L is defined by

(1.2) Lu(x) = P. V.

∫

Rn
Ksym(x, y)|u(x)− u(y)|p−2(u(x)− u(y)) dy, x ∈ Rn;

the symbol P. V. means “in the principal value sense”; and K is a suitable kernel of

order (s, p) with merely measurable coefficients. Above Ksym is the symmetric part

of K defined as Ksym(x, y) = (K(x, y)+K(y, x))/2. Equivalently, we will consider the

minimizers of the following class of nonlocal functionals

(1.3) F(v) :=

∫

Rn

∫

Rn
K(x, y)|v(x)− v(y)|p dxdy,

whose domain of definition is v ∈ W s,p(Rn). Specifically, we shall consider mini-

mization problems with prescribed boundary values, i. e., v = g on Rn \ Ω. These

minimizers indeed coincide with the solutions to (1.1), as seen, e. g., in Theorem 2.3

in [7]. We refer to Section 2 for the precise assumptions on the involved quantities.

However, in order to simplify, one can just keep in mind the model case when the
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kernel K(x, y) coincides with |x − y|−n−sp; that is, the function u is the solution to

the following problem {
(−∆)sp u = 0 in Ω,

u = g in Rn \ Ω,

where the symbol (−∆)sp denotes the usual fractional p-Laplacian operator, though in

such a case the difficulties arising from having merely measurable coefficients disap-

pear.

To formulate our main results, there is a special quantity appearing in estimates

and being fundamental when we deal with nonlocal operators. Namely, we define the

nonlocal tail of a function v ∈W s,p(Rn) as

(1.4) Tail(v;x0, R) :=

[
Rsp

∫

Rn\BR(x0)
|v(x)|p−1|x− x0|−(n+sp) dx

] 1
p−1

.

Note that the quantity above is finite whenever v ∈ Lq(Rn), q ≥ p − 1 and R > 0.

The definition already appears in [7]. The way how the nonlocal tail will be handled

is one of the key-points in the proof of the main result of our paper, which reads as

follows

Theorem 1.1 (Nonlocal Harnack inequality). For any s ∈ (0, 1) and any p ∈
(1,∞), let u ∈W s,p(Rn) be a weak solution to (1.1) such that u ≥ 0 in BR ≡ BR(x0) ⊂
Ω. Then the following estimate holds for any Br ≡ Br(x0) ⊂ BR/2(x0),

(1.5) sup
Br

u ≤ c inf
Br
u+ c

( r
R

) sp
p−1

Tail(u−;x0, R),

where Tail(·) is defined in (1.4), u− = max{−u, 0} is the negative part of the func-

tion u, and the constants c depend only on n, p, s and on the structural constants λ

and Λ defined in (2.1).

It is worth remarking that in the case when u is nonnegative in the whole Rn, the

inequality in (1.5) reduces to the classical Harnack inequality.

We also consider the situation when the function u is merely a weak supersolution

to problem (1.1); see Definition 2.1 below. In analogy to the local case s = 1, we prove

a weak Harnack inequality.

Theorem 1.2 (Nonlocal weak Harnack inequality). For any s ∈ (0, 1) and any

p ∈ (1,∞), let u ∈W s,p(Rn) be a weak supersolution to (1.1) such that u ≥ 0 in BR ≡
BR(x0) ⊂ Ω. Then the following estimate holds for any Br ≡ Br(x0) ⊂ BR/2(x0) and

for any t < (p− 1)n/(n− sp) with 1 < p < n/s,

(1.6)

(
−
∫

Br

ut
)1
t

≤ c inf
B2r

u+ c
( r
R

) sp
p−1

Tail(u−;x0, R),

where Tail(·) is defined in (1.4), u− = max{−u, 0} is the negative part of the func-

tion u, and the constants c depend only on n, p, s, λ and Λ.



NONLOCAL HARNACK INEQUALITIES 3

As expected, the contribution given by the nonlocal tail have again to be considered

and the result is analogous to the local case if u is nonnegative in the whole Rn.

For what concerns the main topic in the present paper, i. e., Harnack-type in-

equalities for the minimizers of (1.3), a few words for the linear case when p = 2

have to be said since very interesting results arise comparing to the classic local case

when s = 1. Firstly, the analog standard elliptic Harnack inequality can be easily

derived using Poisson kernels by requiring the minimizers u to be nonnegative in the

whole Rn. This restriction is evidently very strong and it also precludes to establish

many consequences really not needing such positivity of the solutions to (1.1). For

instance, even the possibility to directly derive the tightly related Hölder regularity

estimates is ruled out, although it is well known that in the local case both Harnack

and Hölder statements are equivalent for a large class of problems. For this, during the

last decades, the validity of the classical Harnack inequality without extra positivity

assumptions has been an open problem in a nonlocal setting, and more in general for

integro-differential operators of the form in (1.2). An answer has been recently given

by Kassmann, who provided a simple counter-example by showing that positivity can-

not be dropped nor relaxed even in the most simple case when L coincides with the

fractional Laplacian (−∆)s; see Theorem 1.2 in [13]. The same author proposed a

new formulation of the Harnack inequality without requiring the additional positivity

on the whole Rn by adding an extra term, basically a natural tail contribution on the

right hand-side, which takes into account the nonlocality of the fractional Laplacian,

for any s ∈ (0, 1); see Theorem 3.1 in [14].

Here, we will deal with a larger class of operators whose kernel K is not necessarily

symmetric, with only measurable coefficients, and, above all, satisfying fractional

differentiability for any s ∈ (0, 1) and p-summability for any p > 1. For this, we will

have to handle not only the usual nonlocal character of such fractional operators, as

for instance in the aforementioned papers [13, 14], but also the difficulties given by

the corresponding nonlinear behavior. As a consequence, we can make use neither

of the powerful “s-harmonic extension framework” provided by Caffarelli-Silvestre

in [3], nor of various tools as, e. g., the sharp 3-commutators estimates introduced

in [5] to deduce the regularity of weak fractional harmonic maps, the strong barriers

and density estimates in [24, 25, 23], the commutator and energy estimates in [21,

22], and so on. Indeed, the aforementioned tools seem not to be trivially adaptable

to a nonlinear framework; also, increasing difficulties are due to the non-Hilbertian

structure of the involved fractional Sobolev spaces W s,p when p is different than 2.

In fact, we develop a nonlocal counterpart for the seminal paper by DiBenedetto-

Trudinger [6].

Finally, a great attention has been focused on the study of problems involving

fractional Sobolev spaces and corresponding nonlocal equations, both from a pure

mathematical point of view and for concrete applications, since they naturally arise
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in many different contexts (see for instance [8] for an elementary introduction to this

topic and for a wide list of related references). However, for regularity and related

results for the minimizers of this kind of operators when p 6= 2, the theory seems

to be rather incomplete. Nonetheless, some partial results are known. It is worth

citing the higher regularity contributions in the case when s is close to 1 proven in

the interesting papers [1, 16], recently extended in some extents by the authors in [7]

for any s ∈ (0, 1); see, also, [4] for related existence and uniqueness results in the case

when p goes to infinity. Also, we would like to mention the analysis in the papers [2, 9]

where some basic results for fractional p-eigenvalues have been proven.

The paper is organized as follows. In Section 2 below, we fix the notation by

also recalling some recent results on the fractional p-minimizers and some classical

tools. Section 3 is devoted to a nonlocal expansion of positivity in order to accurately

estimate the infimum of the superminima of (1.3). In Section 4, we are finally able

to complete the proof of Theorem 1.1. In Section 5, we shall prove the weak Harnack

inequality given by Theorem 1.2.

2. Preliminaries

In this section we state the general assumptions on the quantity we are dealing

with. We keep these assumptions throughout the paper.

The kernel K : Rn ×Rn → [0,∞) is a measurable function such that

(2.1) λ ≤ K(x, y)|x− y|n+sp ≤ Λ for almost x, y ∈ Rn,
for some s ∈ (0, 1), p > 1, λ ≥ Λ ≥ 1. We notice that the assumption on K can be

weakened as follows

(2.2) λ ≤ K(x, y)|x− y|n+sp ≤ Λ for almost x, y ∈ Rn s. t. |x− y| ≤ 1,

(2.3) 0 ≤ K(x, y)|x− y|n+η ≤M for almost x, y ∈ Rn s. t. |x− y| > 1,

for some s, λ,Λ as above, η > 0 and M ≥ 1, as seen, e. g., in the recent papers by

Kassmann (see also the more general assumptions in [14]). For the sake of simplicity,

we will work under the assumption in (2.1); the assumptions in (2.2)-(2.3) would bring

no relevant differences in all the proofs in the rest of the paper.

Now we recall the definition of the fractional Sobolev spaces, denoted by W s,p(Rn).

For any p ∈ [1,∞) and s ∈ (0, 1)

W s,p(Rn) :=

{
v ∈ Lp(Rn) :

|v(x)− v(y)|
|x− y|

n
p

+s
∈ Lp(Rn ×Rn)

}
;

i. e., an intermediary Banach space between Lp(Rn) and W 1,p(Rn) endowed with the

natural norm

‖v‖W s,p(Rn) :=

(∫

Rn
|v|p dx+

∫

Rn

∫

Rn

|v(x)− v(y)|p
|x− y|n+sp

dxdy

) 1
p

.
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In a similar way, it is possible to define the fractional Sobolev spaces W s,p(Ω) in a

domain Ω ⊂ Rn. For the basic properties of these spaces and some related topics we

refer to [8] and the references therein.

For any u, v ∈W s,p(Rn), we consider the functional E defined by

E(u, v) :=

∫

Rn

∫

Rn
K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y)) dxdy.

Suppose that u and ϕ are sufficiently smooth, take e. g. C∞0 (Rn), and define the

linear operator L as the one satisfying the relation

〈Lu, ϕ〉 = E(u, ϕ).

Thus, assuming that K satisfies (2.1), for any u ∈W s,p(Rn), we have

Lu(x) = P. V.

∫

Rn
Ksym(x, y)|u(x)− u(y)|p−2(u(x)− u(y)) dy, x ∈ Rn,

up to a multiplicative constant; P.V. being a commonly used abbreviation for “in the

principal value sense”.

Let Ω ⊂ Rn be a bounded open set in Rn. Let g ∈ W s,p(Rn), we are interested in

weak solutions to the following class of integro-differential equations

(2.4)

{
Lu = 0 in Ω,

u = g in Rn \ Ω.

As customary, a function u ∈ W s,p(Rn) is a solution to (2.4) if E(u, ϕ) = 0 for all

test function ϕ ∈ C∞0 (Ω). Moreover, if we consider the following functional

(2.5) F(v) =

∫

Rn

∫

Rn
K(x, y)|v(x)− v(y)|p dxdy,

thanks to the assumptions (2.1) on the kernel K, there exists a unique p-minimizer u

of F over all v ∈ W s,p(Rn) such that v = g in Rn \ Ω and it is a weak solutions to

problem (2.4) and vice versa; see Theorem 2.3 in [7].

We conclude this section by recalling the definitions of weak subsolution and weak

supersolution to problem (2.4). Before, we define, for a given g ∈ W s,p(Rn), the

convex sets of W s,p(Rn) as

K±g (Ω) := {v ∈W s,p(Rn) : (g − v)± ∈W s,p
0 (Ω)}

and

Kg(Ω) := K+
g (Ω) ∩ K−g (Ω) = {v ∈W s,p(Rn) : v − g ∈W s,p

0 (Ω)},
where we denoted by W s,p

0 (Ω) the closure of C∞0 (Ω) in the norm ‖ · ‖W s,p(Ω). We

underline that the functions in the space W s,p
0 (Ω) are defined in the whole space,

since they are considered to be extended to zero outside Ω.
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Definition 2.1. Let g ∈ W s,p(Rn). A function u ∈ K−g is a weak subsolution to

problem (2.4) if∫

Rn

∫

Rn
K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))(η(x)− η(y)) dxdy ≤ 0

for every nonnegative η ∈W s,p
0 (Rn).

A function u ∈ K+
g is a weak supersolution to problem (2.4) if

(2.6)

∫

Rn

∫

Rn
K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))(η(x)− η(y)) dxdy ≥ 0

for every nonnegative η ∈ W s,p
0 (Rn). As customary, a function u ∈ Kg is a weak

solution to problem (2.4) if it is both a sub and a supersolution; that is,∫

Rn

∫

Rn
K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))(η(x)− η(y)) dxdy = 0

for every η ∈W s,p
0 (Rn).

Similarly, it is possible to define sub- and superminimizers of (2.5), see for instance

Definition 2.2 in [7].

2.1. Notation. Before starting with the proofs, it is convenient to fix some notation

which will be used throughout the rest of the paper. Firstly, notice that we will

follow the usual convention of denoting by c a general positive constant which will

not necessarily be the same at different occurrences and which can also change from

line to line. For the sake of readability, dependencies of the constants will be often

omitted within the chains of estimates, therefore stated after the estimate. Relevant

dependences on parameters will be emphasized by using parentheses; special constants

will be denoted by c0, c1,...

As customary, we denote by

BR(x0) = B(x0;R) := {x ∈ Rn : |x− x0| < R}
the open ball centered in x0 ∈ Rn with radius R > 0. When not important and clear

from the context, we shall use the shorter notation BR := B(x0;R). Moreover, if

f ∈ L1(S) and the n-dimensional Lebesgue measure |S| of the set S ⊆ Rn is finite

and strictly positive, we write

(f)S := −
∫

S
f(x) dx =

1

|S|

∫

S
f(x) dx.

Let k > 0 and S ⊆ Rn, we denote by

(2.7) w+(x) := (u(x)− k)+ = max
{
u(x)− k, 0

}
,

and

(2.8) w−(x) := (u(x)− k)− = (k − u(x))+,

for any x ∈ S. Clearly w+(x) 6= 0 in the set
{
x ∈ S : u(x) > k

}
, and w−(x) 6= 0 in

the set
{
x ∈ S : u(x) < k

}
.
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Finally, in order to deal also with non symmetric kernels, we define

(2.9) K̄(x, y) = max
{
K(x, y),K(y, x)

}
.

We now recall the definition of the nonlocal tail of a function u in the ball BR(x0),

as seen in [7]. As mentioned in the introduction, this quantity will play an important

role in the rest of the paper. For any u ∈W s,p(Rn) and BR(x0) ⊂ Rn we write

(2.10) Tail(u;x0, R) :=

[
Rsp

(∫

Rn\BR
|u(y)|p−1|y − x0|−n−sp dy

)] 1
p−1

.

2.2. Some recent results on the fractional p-minimizers. In this section, we

recall some recent results for the minimizers of the nonlocal functionals (2.5) and

hence also for the weak solutions to problem (2.4), which can be found in [7].

Firstly, we state a general inequality proved in [7], which shows that the natural

extension of the Caccioppoli inequality to the nonlocal framework has to take into

account a suitable tail. For other fractional Caccioppoli-type inequalities, see also [19,

20] and [9].

Theorem 2.2. ([7, Theorem 1.4]). Let p ∈ [1,∞) and let u ∈ W s,p(Rn) be a weak

solution to problem (2.4). Then, for any Br ≡ Br(x0) ⊂ Ω and any nonnegative ϕ ∈
C∞0 (Br), the following estimate holds true

∫

Br

∫

Br

K(x, y)|w±(x)ϕ(x)− w±(y)ϕ(y)|p dxdy

≤ c
∫

Br

∫

Br

K̄(x, y)(max{w±(x), w±(y)})p|ϕ(x)− ϕ(y)|p dxdy(2.11)

+ c

∫

Br

w±(x)ϕp(x) dx

(
sup

y ∈ suppϕ

∫

Rn\Br
K̄(x, y)wp−1

± (x) dx

)
,

where w±, K̄ are defined in (2.7)-(2.8) and (2.9) respectively, and c depends only on p.

Remark 2.3. We underline that the estimate in (2.11) holds for w+ also when u is a

weak subsolution to (2.4) and for w− when u is a weak supersolution to (2.4).

As in the local case, the estimate above contains basically all the information deriv-

ing from the minimum property of the functions u for what concerns the correspond-

ing Hölder continuity. A first natural consequence is the local boundedness of both

p-subminimizers of (2.5) and weak subsolutions to problem (2.4), as stated below.

Theorem 2.4. ([7, Theorem 1.1 and Remark 4.2]). Let p ∈ [1,∞), let u ∈W s,p(Rn)

be a weak subsolution to problem (2.4) and let Br ≡ Br(x0) ⊂ Ω. Then the following

estimate holds true

sup
Br/2

u ≤ c δTail(u+;x0, r/2) + c δ
− (p−1)n

sp2

(
−
∫

Br

up+ dx

) 1
p

,(2.12)
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where Tail(·) is defined in (2.10), u+ = max{u, 0} is the positive part of the function

u, the parameter δ ∈ (0, 1], and the constants c depend only on n, p, s, λ and Λ.

Combining Theorem 2.2 together with a nonlocal Logarithmic-Lemma (see [7, Lem-

ma 1.3]), one can prove that the both p-minimizers and weak solutions enjoy an

oscillation estimates, which naturally yields the desired Hölder continuity. Once again,

the tail contribution given by the nonlocal form of the involved operators has to be

taken into account (see [7, Theorem 1.2]).

2.3. Classical technical tools. In this section we collect some classical tools that

will be useful in the proofs of the main results of the paper.

Below, a Krylov-Safonov covering lemma, whose proof can be found, for instance,

in [15, Lemma 7.2]. We have

Lemma 2.5. Let E ⊂ Br(x0) a measurable set. Let δ̄ ∈ (0, 1), and define

(2.13) [E]δ̄ :=
⋃

ρ>0

{B3ρ(x) ∩Br(x0), x ∈ Br(x0) : |E ∩B3ρ(x)| > δ|Bρ(x)|} .

Then, either

i ) |[E]δ̄| ≥
c3

δ̄
|E|

or

ii ) [E]δ̄ = Br(x0),

where c3 = c3(n).

Two well-known iteration lemmata are also needed.

Lemma 2.6. (see, e. g., [11, Lemma 7.1]). Let β > 0 and let {Aj} be a sequence of

real positive numbers such that

Aj+1 ≤ c0 b
jA1+β

j

with c0 > 0 and b > 1.

If A0 ≤ c
− 1
β

0 b
− 1
β2 , then we have

Aj ≤ b
− j
β A0,

which in particular yields lim
j→∞

Aj = 0.

Lemma 2.7. (see, e. g., [10, Lemma 1.1]). Let f = f(t) be a nonnegative bounded

function defined for 0 ≤ T0 ≤ t ≤ T1. Suppose that for T0 ≤ t < τ ≤ T1 we have

f(t) ≤ c1(τ − t)−θ + c2 + ζf(τ),

where c1, c2, θ and ζ are nonnegative constants, and ζ < 1. Then there exists a

constant c, depending only on θ and ζ, such that for every ρ, R, T0 ≤ ρ < R ≤ T1,

we have

f(ρ) ≤ c
[
c1 (R− ρ)−θ + c2

]
.



NONLOCAL HARNACK INEQUALITIES 9

3. Towards a Harnack inequality: expansion of positivity

In this section, we show that we can accurately estimate the infimum of the super-

minima of (1.3) and of the weak supersolutions to problem (1.1). Our strategy extends

the analogous expansion of positivity in the local framework s = 1, as presented, e. g.,

in [11, Section 7.5]. Clearly, in order to extend the results there to our framework,

we have to take into account considerable and decisive modifications to handle the

nonlocality of our problems.

From now on, for the sake of readability, we define

dν := K(x, y) dxdy and dν̄ := K̄(x, y) dxdy, with K̄ as in (2.9).

Lemma 3.1. Let u ∈ W s,p(Rn) be a weak supersolution to problem (2.4) such that

u ≥ 0 in BR(x0) ⊂ Ω. Let k ≥ 0. Suppose that there exists σ ∈ (0, 1] such that

(3.1) |Br ∩ {u ≥ k}| ≥ σ|Br|,
for some r satisfying 0 < 16r < R. Then there exists a constant c̄ ≡ c̄(n, s, p, λ,Λ)

such that ∣∣∣∣B6r ∩
{
u ≤ 2δk − 1

2

( r
R

) sp
p−1

Tail(u−;x0, R)

}∣∣∣∣ ≤
c̄

σ log 1
2δ

|B6r|

holds for all δ ∈ (0, 1/4), where Tail(·) is defined in (2.10).

Proof. To begin, set

d :=
1

2

( r
R

) sp
p−1

Tail(u−;x0, R) and ũ = u+ d,

so that ũ is obviously still a supersolution. Take a smooth function ϕ with support

in B7r such that 0 ≤ ϕ ≤ 1 in B7r, ϕ ≡ 1 in B6r and |Dϕ| ≤ c/r. By choosing

η := ũ1−pϕp in (2.6), we get

0 ≤
∫

B8r

∫

B8r

|ũ(x)− ũ(y)|p−2(ũ(x)− ũ(y))(ũ1−p(x)ϕp(x)− ũ1−p(y)ϕp(y)) dν

+

∫

Rn\B8r

∫

B8r

|ũ(x)− ũ(y)|p−2(ũ(x)− ũ(y))ũ1−p(x)ϕp(x) dν

−
∫

B8r

∫

Rn\B8r

|ũ(x)− ũ(y)|p−2(ũ(x)− ũ(y))ũ1−p(y)ϕp(y) dν

=: I1 + I2 + I3.(3.2)

The first integral can be estimated like I1 in the proof of [7, Lemma 1.3] (more

precisely, see (3.12) and (3.17) there), in order to get

I1 ≤ −
1

c

∫

B6r

∫

B6r

∣∣∣∣log

(
ũ(x)

ũ(y)

)∣∣∣∣
p

dν + c rn−sp.
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It remains to estimate the second integral in the right hand-side of (3.2), which in

turn will imply an estimate for I3, too. Firstly, we split I2 as follows

I2 =

∫

Rn\B8r∩{ũ(y)<0}

∫

B8r

|ũ(x)− ũ(y)|p−2(ũ(x)− ũ(y))ũ1−p(x)ϕp(x) dν

+

∫

Rn\B8r∩{ũ(y)≥0}

∫

B8r

|ũ(x)− ũ(y)|p−2(ũ(x)− ũ(y))ũ1−p(x)ϕp(x) dν

=: I2,1 + I2,2.

By the definition of ũ and so of d, the assumption on the kernel and using the fact

that ϕ is supported in B7r, we get

I2,1 =

∫

Rn\B8r

∫

B8r

(ũ(x) + (ũ(y))−)p−1ũ1−p(x)ϕp(x) dν

≤ crn
∫

Rn\B8r

(
1 +

(u(y))−
d

)p−1

|y − x0|−n−sp dy

≤ crnr−sp + crnd1−pR−sp[Tail(u−;x0, R)]p−1

≤ crnr−sp.

On the other hand, since u(y) is nonnegative whenever y ∈ B7r, we easily deduce that

I2,2 ≤ crn−sp .
Therefore, we actually obtain

I2 + I3 ≤ crn−sp

for a constant c ≡ c(n, s, p, λ,Λ). Merging the estimates above, we conclude with the

following intermediate estimate

(3.3)

∫

B6r

∫

B6r

∣∣∣∣log

(
ũ(x)

ũ(y)

)∣∣∣∣
p

dν ≤ crn−sp .

Now, for any δ ∈ (0, 1/4), define

v :=

[
min

{
log

1

2δ
, log

k + d

ũ

}]

+

.

Since v is a truncation of log(k + d)− log ũ, the energy decreases and, in particular,
∫

B6r

∫

B6r

|v(x)− v(y)|p dν ≤
∫

B6r

∫

B6r

∣∣∣∣log

(
ũ(x)

ũ(y)

)∣∣∣∣
p

dν ≤ crn−sp

holds, in view of (3.3). Then by Hölder’s inequality and fractional Poincaré inequality

(see, e. g., Section 4 in [18]) we also deduce that

(3.4)

∫

B6r

|v(x)− (v)B6r |dx ≤ crs+n/p
′
[∫

B6r

∫

B6r

|v(x)− v(y)|p dν

]1/p

≤ c |B6r|.

Notice that by the definitions of v and ũ we have

{v = 0} = {ũ ≥ k + d} = {u ≥ k}.
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Hence, by assumption (3.1), it follows that

|B6r ∩ {v = 0}| ≥ σ

6n
|B6r|.

Following [17] (see also the proof of Lemma 5.1 in [7]), together with the estimate

above, we get

log
1

2δ
=

1

|B6r ∩ {v = 0}|

∫

B6r∩{v=0}

(
log

1

2δ
− v(x)

)
dx

≤ 6n

σ

[
log

1

2δ
− (v)B6r

]
.

Thus, integrating the previous inequality over B6r ∩
{
v = log(1/2δ)

}
, we get

∣∣∣∣
{
v = log

1

2δ

}
∩B6r

∣∣∣∣ log
1

2δ
≤ 6n

σ

∫

B6r

|v(x)− (v)B6r |dx ≤
c

σ
|B6r|,

where we also used (3.4). On the whole, we have proved for all 0 < δ < 1/4 that

|B6r ∩ {ũ ≤ 2δ(k + d)}| ≤ c

σ

1

log 1
2δ

|B6r|;

thus inserting the definition of ũ into the display above finishes the proof. �

The main result of this section is condensed in the following

Lemma 3.2. Let u ∈ W s,p(Rn) be a weak supersolution to problem (2.4) such that

u ≥ 0 in BR(x0) ⊂ Ω. Let k ≥ 0 and suppose that there exists σ ∈ (0, 1] such that

|Br ∩ {u ≥ k}| ≥ σ|Br|,
for some r satisfying 0 < 16r < R. Then there exists a constant δ ∈ (0, 1/4) depending

only on n, p, s, λ, Λ, σ, for which

(3.5) inf
B4r

u ≥ δk −
( r
R

) sp
p−1

Tail(u−;x0, R)

holds. Here Tail(·) is defined in (2.10).

Proof. Without loss of generality, we may assume that

(3.6)
( r
R

) sp
p−1

Tail(u−;x0, R) ≤ δk,

since otherwise (3.5) trivializes by the nonnegativity of u in BR.

Now, for any r ≤ ρ ≤ 6r, take a smooth function ϕ with support in Bρ and

consider the test function η := w−ϕp, where we have denoted by w− := (`− u)+, for

any ` ∈ (δk, 2δk). By testing (2.6), we get

0 ≤
∫

Bρ

∫

Bρ

|u(x)− u(y)|p−2(u(x)− u(y))(w−(x)ϕp(x)− w−(y)ϕp(y)) dν

+

∫

Rn\Bρ

∫

Bρ

|u(x)− u(y)|p−2(u(x)− u(y))w−(x)ϕp(x) dν
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−
∫

Bρ

∫

Rn\Bρ
|u(x)− u(y)|p−2(u(x)− u(y))w−(y)ϕp(y) dν

=: J1 + J2 + J3.

As before, it is convenient to split the second (and analogously the third) integral

in the right hand-side of the preceding inequality as

J2 =

∫

Rn\Bρ∩{u(y)<0}

∫

Bρ

|u(x)− u(y)|p−2(u(x)− u(y))w−(x)ϕp(x) dν

+

∫

Rn\Bρ∩{u(y)≥0}

∫

Bρ

|u(x)− u(y)|p−2(u(x)− u(y))w−(x)ϕp(x) dν

=: J2,1 + J2,2.

Let us estimate the integral J2,1. Notice that

K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))w−(x)ϕp(x)

≤ (`+ (u(y))−)p−1`

(
sup

x∈suppϕ
K̄(x, y)

)
χBρ∩{u<`}(x),

where K̄ is defined in (2.9). This plainly yields

J2,1 ≤ `

(
sup

x∈suppϕ

∫

Rn\Bρ
(`+ (u(y))−)p−1K̄(x, y) dy

)
|Bρ ∩ {u < `}|.

For the contribution given by J2,2 we instead have, using the nonnegativity of u in

Bρ,

K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))w−(x)ϕp(x)

≤ `p
(

sup
x∈suppϕ

K̄(x, y)

)
χBρ∩{u<`}(x).

As the similar reasoning it holds for J3 as well, we deduce that

J2 + J3 ≤ c `

(
sup

x∈suppϕ

∫

Rn\Bρ
(`+ (u(y))−)p−1K̄(x, y) dy

)
|Bρ ∩ {u < `}|.

The integral in J1 can be instead estimated as follows (as one can check in the proof

of the Caccioppoli-type estimate in [7, Theorem 1.4]).

J1 ≤ −c
∫

Bρ

∫

Bρ

|w−(x)ϕ(x)− w−(y)ϕ(y)|p dν

+c

∫

Bρ

∫

Bρ

(
max

{
w−(x), w−(y)

})p |ϕ(x)− ϕ(y)|p dν̄.

By combining all the estimates above we finally arrive at∫

Bρ

∫

Bρ

|w−(x)ϕ(x)− w−(y)ϕ(y)|p dν
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≤ c

∫

Bρ

∫

Bρ

(
max

{
w−(x), w−(y)

})p |ϕ(x)− ϕ(y)|p dν̄

+ c `

(
sup

x∈suppϕ

∫

Rn\Bρ
(`+ (u(y))−)p−1K̄(x, y) dy

)
|Bρ ∩ {u < `}| .(3.7)

At this level, we need to set the quantities in (3.7) in order to apply Lemma 2.6.

To this end, let

` ≡ `j := δk + 2−j−1δk,

and

ρ ≡ ρj := 4r + 21−jr and ρ̃j =
ρj+1 + ρj

2
for all j = 0, 1, . . . Note that ρj , ρ̃j ∈ (4r, 6r) and

`j − `j+1 = 2−j−2δk ≥ 2−j−3`j

for all such j. Moreover, by (3.6) we see that

`0 =
3

2
δk ≤ 2δk − 1

2

( r
R

) sp
p−1

Tail(u−;x0, R)

and hence

{u < `0} ⊂
{
u < 2δk − 1

2

( r
R

) sp
p−1

Tail(u−;x0, R)

}
.

Lemma 3.1 then implies that

(3.8)
|B6r ∩ {u < `0}|

|B6r|
≤ c̄

σ

1

log 1
2δ

.

Furthermore, we have for any j = 0, 1, 2, ... that

w− ≡ wj = (`j − u)+ ≥ (`j − `j+1)χ{u<`j+1} ≥ 2−j−3`jχ{u<`j+1}.

Let us denote by Bj := Bρj (x0) and let ϕj ∈ C∞0 (Bρ̃j ) be such that 0 ≤ ϕj ≤ 1,

ϕj ≡ 1 in Bj+1, |Dϕj | ≤ 2j+3/r. With these choices in our hands, we can write

(`j − `j+1)p
( |Bj+1 ∩ {u < `j+1}|

|Bj+1|

) p
p∗
≤
[
−
∫

Bj+1

wp
∗
j ϕ

p∗
j dx

] p
p∗

≤ c
[
−
∫

Bj

wp
∗
j ϕ

p∗
j dx

] p
p∗

≤ crsp−
∫

Bj

∫

Bj

|wj(x)ϕj(x)− wj(y)ϕj(y)|p dν,(3.9)

where in the last inequality we also used the fractional Sobolev embedding with p∗ =

np/(n− sp), well defined if sp < n.

We then proceed to estimate (3.9) with the aid of (3.7). First, by the properties of

K we find the estimate∫

Bj

∫

Bj

(
max

{
wj(x), wj(y)

})p |ϕj(x)− ϕj(y)|p dν̄

≤ c `pj
∫

Bj

∫

Bj∩{u<`j}
‖Dϕj‖p∞|x− y|p−n−sp dxdy
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≤ c 2jp`pj r
−sp|Bj ∩ {u < `j}| .

Second, using for any y ∈ Rn \Bj ,
sup

x∈suppϕj
K̄(x, y) ≤ c2j(n+sp)|y − x0|−n−sp,

we get that

sup
x∈suppϕj

∫

Rn\Bj
(`j + (u(y))−)p−1K̄(x, y) dy

≤ c2j(n+sp)

∫

Rn\Bj
(`j + (u(y))−)p−1|y − x0|−n−sp dy

≤ c2j(n+sp)`p−1
j r−sp + c2j(n+sp)

∫

Rn\BR
(u(y))p−1

− |y − x0|−n−sp dy

= c2j(n+sp)`p−1
j r−sp + c2j(n+sp)r−sp

( r
R

)sp
[Tail(u−;x0, R)]p−1

≤ c2j(n+sp)`p−1
j r−sp,

where we have also used the fact that u is nonnegative in BR, (3.6) and δk < `j . Thus,

in view of the three displays above, (3.9) and (3.7) yield

(`j − `j+1)p
( |Bj+1 ∩ {u < `j+1}|

|Bj+1|

) p
p∗
≤ c 2j(n+p+sp)`pj

|Bj ∩ {u < `j}|
|Bj |

.

If we set

Aj :=
|Bj ∩ {u < `j}|

|Bj |
,

then the previous estimates can be read as follows

A
p
p∗
j+1 ≤ c

`pj 2j(n+p+sp)

(`j − `j+1)p
Aj ≤ c 2j(n+2p+sp)Aj

that in turn implies

Aj+1 ≤ c1 2
j
(
np∗
p

+2p∗+sp∗
)
A

1+ sp
n−ps

j ,

where c1 ≡ c1(n, s, p, λ,Λ). Now, we are ready to apply Lemma 2.6 with

c0 = c1, b = 2
np∗
p

+2p∗+sp∗
> 1 and β =

sp

n− ps > 0,

there. One can check that, choosing δ small enough depending only on n, s, p, λ,Λ, ν;

i. e.,

0 < δ :=
1

4
exp



−

c̄ c
n−sp
ps

1 2

(
n
p

+s+2
)
n(n−ps)
ps2

σ



 <

1

4
,

and applying (3.8) assure that

A0 ≤ c
−n−sp

sp

1 2
−
(
n
p

+s+2
)
n(n−ps)
ps2 ,
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then

lim
j→∞

Aj = 0;

that is inf
x∈B4r

u(x) ≥ δk, from which the result follows easily. �

4. Proof of the Nonlocal Harnack inequality

In this section, we prove the nonlocal Harnack inequality as given in Theorem 1.1.

The idea is to combine in a suitable way the local boundedness given by Theorem 2.4,

true for subsolutions, together with the expansion of positivity obtained in Section 3

that allows us to prove the next estimate valid for the infimum of supersolutions to

problem (1.1), by mean of the classical tools presented in Section 2.3 and taking into

account the tail estimate for solutions given in forthcoming Lemma 4.2.

Lemma 4.1. Let u ∈ W s,p(Rn) be a weak supersolution to problem (1.1) such that

u ≥ 0 in BR ≡ BR(x0) ⊂ Ω. Then there exist constants ε ∈ (0, 1) and c ≥ 1, both

depending only on n, s, p, λ and Λ such that

(4.1)

(
−
∫

Br

uε dx

) 1
ε

≤ c inf
Br
u+ c

( r
R

) sp
p−1

Tail(u−;x0, R)

whenever Br ≡ Br(x0) ⊂ BR, where Tail(·) is defined in (2.10).

Proof. Let us define for any t > 0

Ait =

{
x ∈ Br : u(x) > t δi − T

1− δ

}
, i = 0, 1, 2, ...,

where δ is given in Lemma 3.2 and we denoted by T the following quantity

T :=
( r
R

) sp
p−1

Tail(u−;x0, R).

We want to make use of the Krylov-Safonov covering Lemma 2.5 with E = Ai−1
t .

Obviously we have Ai−1
t ⊂ Ait, for any i = 1, 2, ... Let x ∈ Br such that B3ρ(x)∩Br ⊂

[Ai−1
t ]δ̄, it has, recalling the definition (2.13),

|Ai−1
t ∩B3ρ(x)| > δ̄|Bρ| =

δ̄

3n
|B3ρ|.

We can now apply Lemma 3.2, with k = t δi−1 − T
1−δ and σ = δ̄

3n there, to get

u > δ

(
t δi−1 − T

1− δ

)
− T = tδi − T

1− δ in Br,

and hence [Ai−1
t ]δ̄ ⊂ Ait. By Lemma 2.5 we must either Ait = Br or |Ait| ≥ c3

δ̄
|Ai−1

t |
for c3 ≡ c3(n). In any case, we can deduce that if for some integer m it holds

(4.2) |A0
t | > c3

(
δ̄

c3

)m
|Br|,
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then

|Am−1
t | > c3δ̄

−1|Am−2
t | > · · · > cm−1

3 δ̄1−m|A0
t | > δ̄|Br|

and therefore Amt = Br. This implies

u > tδm − T

1− δ in Br.

Now we can choose m to be the smallest integer such that (4.2) is satisfied, that is

m >
1

log(δ̄/c3)
log
|A0

t |
c3|Br|

.

With this choice of m we get

inf
Br
u > δ t

( |A0
t |

c3|Br|

)1
β

− T

1− δ , β :=
log(δ̄/c3)

log δ
,

where now both δ and β depend only on n, s, p, λ,Λ and c3 ≡ c3(n). Setting ξ :=

infBr u we get

(4.3)

∣∣∣Br ∩
{
u > t− T

1−δ

}∣∣∣
|Br|

=
|A0

t |
|Br|

≤ c3δ
−β t−β

(
ξ +

T

1− δ

)β
.

By Cavalieri’s Principle, we have

−
∫

Br

uε dx = ε

∫ ∞

0
tε−1 |Br ∩ {u > t}|

|Br|
dt

for any ε > 0. Since

|Br ∩ {u > t}|
|Br|

≤

∣∣∣Br ∩
{
u > t− T

1−δ

}∣∣∣
|Br|

and using the estimate in (4.3), it holds

ε

∫ ∞

0
tε−1 |Br ∩ {u > t}|

|Br|
dt ≤ ε

∫ a

0
tε−1 dt

+ε

∫ ∞

a
tε−1c3 δ

−β t−β
(
ξ +

T

1− δ

)β
dt

≤ aε + ε c3 δ
−β
(
ξ +

T

1− δ

)β ∫ ∞

a
tε−1−β dt

for any a > 0. In particular, taking a := ξ + T
1−δ and ε := β/2, we finally get

−
∫

Br

uε dx ≤ c
(
ξ +

T

1− δ

)ε
.

This concludes the proof. �

The next lemma gives a precise control of the tail of the weak solutions.
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Lemma 4.2. Let u ∈ W s,p(Rn) be a weak solution to problem (1.1) such that u ≥ 0

in BR(x0) ⊂ Ω. Then, for 0 < r < R,

(4.4) Tail(u+;x0, r) ≤ c sup
Br

u+ c
( r
R

) sp
p−1

Tail(u−;x0, R),

where Tail(·) is defined in (2.10) and the constants c depend only on n, p, s, λ and Λ.

Proof. Set k := supBr u and take a smooth function ϕ ∈ C∞0 (Br) such that 0 ≤ ϕ ≤ 1,

ϕ ≡ 1 in Br/2 and |Dϕ| ≤ 8/r; consider the following test fuction

η := (u− 2k)ϕp.

We have

0 =

∫

Br

∫

Br

|u(x)− u(y)|p−2(u(x)− u(y))(η(x)− η(y)) dν

+

∫

Rn\Br

∫

Br

|u(x)− u(y)|p−2(u(x)− u(y))(u(x)− 2k)ϕp(x) dν

−
∫

Br

∫

Rn\Br
|u(x)− u(y)|p−2(u(x)− u(y))(u(y)− 2k)ϕp(y) dν

=: I1 + I2 + I3.(4.5)

A first estimate on I2 will suggest the following split

I2 ≥
∫

Rn\Br

∫

Br

k(u(y)− k)p−1
+ ϕp(x) dν

−
∫

Rn\Br

∫

Br

2kχ{u(y)<k}(u(x)− u(y))p−1
+ ϕp(x) dν

=: I2,1 − I2,2.(4.6)

Now,

I2,1 ≥ ck

∫

Rn\Br

∫

Br

u+(y)p−1ϕp(x) dν − ckp
∫

Rn\Br

∫

Br

ϕp(x) dν

≥ ck|Br|r−sp[Tail(u+;x0, r)]
p−1 − ckpr−sp|Br|,(4.7)

where we have also used the fact that ϕ ≡ 1 in Br/2 and 2|y − x0| ≥ |x− y|.
Also,

I2,2 ≤ 2k

∫

BR\Br

∫

Br

kp−1ϕp dν + 2k

∫

Rn\BR

∫

Br

(k + u(y)−)p−1ϕp(x) dν

≤ ckpr−sp|Br|+ ck|Br|R−sp[Tail(u−;x0, R)]p−1.(4.8)

Observe that I3 can be estimated in the same way. Thus, combining (4.6) with (4.7)

and (4.8), we get

I2 + I3 ≥ −ckpr−sp|Br| − ck|Br|R−sp[Tail(u−;x0, R)]p−1(4.9)
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+ ck|Br|r−sp[Tail(u+;x0, r)]
p−1.

Now, it remains to estimate the contribution given by I1. For this, assume ϕ(x) ≥
ϕ(y); the opposite being treated in the same way as below. For brevity, denote by

w := (u− 2k). For any (x, y) ∈ Br ×Br, we have

|w(x)− w(y)|p−2(w(x)− w(y))(w(x)ϕp(x)− w(y)ϕp(y))

≥ |w(x)− w(y)|pϕp(x)− c|w(x)− w(y)|p−1|w(y)|ϕp−1(x)|ϕ(x)− ϕ(y)|

≥ 1

2
|w(x)− w(y)|pϕp(x)− c|w(y)|p|ϕ(x)− ϕ(y)|p(4.10)

≥ −ckp|ϕ(x)− ϕ(y)|p,
where in (4.10) we used usual Young’s Inequality and also the fact that u ≤ k in Br.

From the estimates above, together with the fact the ϕ is a smooth function, we can

deduce

I1 ≥ −ckp
∫

Br

∫

Br

|ϕ(x)− ϕ(y)|p dν ≥ −ckpr−p
∫

Br

∫

Br

|x− y|p−sp−n dxdy

≥ −ckpr−sp|Br|.(4.11)

Collecting (4.5), (4.9) and (4.11), we finally obtain

Tail(u+;x0, r) ≤ ck + c
( r
R

) sp
p−1

Tail(u−;x0, R),

which is the desired result, recalling the definition of k. �

We are finally ready to complete the proof of the nonlocal Harnack inequality as

stated in Theorem 1.1.

Proof of the nonlocal Harnack Inequality. Set

γ :=
(p− 1)n

sp2
.

The estimate in (2.12) yields

sup
Bρ/2

u ≤ c δTail(u+;x0, ρ/2) + c δ−γ
(
−
∫

Bρ

up+dx

) 1
p

,

which, combined with (4.4) becomes

sup
Bρ/2

u ≤ cδ−γ
(
−
∫

Bρ

up+dx

) 1
p

+ cδ sup
Bρ

u+ cδ
( ρ
R

) sp
p−1

Tail(u−;x0, R).

Now, we want to apply the iteration Lemma 2.7. For this, set ρ = (σ − σ′)r with

1/2 ≤ σ′ < σ ≤ 1. We have by a covering argument that

sup
Bσ′r

u ≤ c
δ−γ

(σ − σ′)
n
p

(
−
∫

Bσr

up dx

) 1
p

+ cδ sup
Bσr

u+ cδ
( r
R

) sp
p−1

Tail(u−;x0, R)
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≤ c
δ−γ

(σ − σ′)
n
p

(
sup
Bσr

u

)p−s
p
(
−
∫

Bσr

us dx

) 1
p

+ cδ sup
Bσr

u

+ cδ
( r
R

) sp
p−1

Tail(u−;x0, R).

By choosing δ = 1/(4c), a standard application of Young’s Inequality
(
with exponent

p/s and (p− s)/p
)

yields

sup
Bσ′r

u ≤ 1

2
sup
Bσr

u+
c

(σ − σ′)
n
q

(
−
∫

Br

uq dx

) 1
q

+ c
( r
R

) sp
p−1

Tail(u−;x0, R), ∀ q ∈ (0, p∗),

so that Lemma 2.7, choosing in particular f(t) := supBσ′t u, τ = σr, t = σ′r, θ = n/q

there, gives

sup
Br

u ≤ c

(
−
∫

Br

uq dx

) 1
q

+ c
( r
R

) sp
p−1

Tail(u−;x0, R), ∀ q ∈ (0, p∗),

where the constant c depends also on q. To conclude the proof we combine the above

estimate with that established in Lemma 4.1, setting q = ε. �

5. Proof of the Nonlocal weak Harnack inequality

This section is devoted to the proof of a weak Harnack type inequality for both

the superminima of the functional in (1.3) and the weak supersolutions to the prob-

lem (1.1). Before starting with the proof of Theorem 1.2, we want to prove a Cac-

cioppoli type estimate given by the following

Lemma 5.1. Let p ∈ (1,∞), q ∈ (1, p), d > 0 and let u ∈ W s,p(Rn) be a weak

supersolutions to problem (1.1) such that u ≥ 0 in BR(x0) ⊂ Ω. Then, for any

Br ≡ Br(x0) ⊂ B3R/4(x0) and any nonnegative ϕ ∈ C∞0 (Br), the following estimate

holds true∫

Br

∫

Br

K(x, y)|w(x)ϕ(x)− w(y)ϕ(y)|p dx dy

≤ c
∫

Br

∫

Br

K̄(x, y)(max{w(x), w(y)})p|ϕ(x)− ϕ(y)|p dx dy(5.1)

+c

(
sup

z∈suppϕ

∫

Rn\Br
K̄(z, y) dy

+d1−pR−sp
(∫

Br

wp(x)ϕp(x) dx

)[
Tail(u−;x0, R)

]p−1
,

where w := (u + d)
p−q
p , K̄ is defined in (2.9) and the constants c depend only on p

and q.
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Proof. For any d > 0, let ũ := u+ d and let η := ũ1−qϕp, where ϕ ∈ C∞0 (Br), r < R,

and q ∈ [1 + σ, p − σ]; σ > 0 small. Test the equation in (2.6) with η as above, by

recalling that ũ is a weak supersolution, we have

0 ≤
∫

Br

∫

Br

|ũ(x)− ũ(y)|p−2
(
ũ(x)− ũ(y)

)(
η(x)− η(y)

)
dν

+

∫

Rn\Br

∫

Br

|ũ(x)− ũ(y)|p−2
(
ũ(x)− ũ(y)

)
η(x) dν

−
∫

Br

∫

Rn\Br
|ũ(x)− ũ(y)|p−2

(
ũ(x)− ũ(y)

)
η(y) dν

=: I1 + I2 + I3.(5.2)

First of all, notice that for any x ∈ BR ⊃ Br and for any y ∈ Rn,

|ũ(x)− ũ(y)|p−2
(
ũ(x)− ũ(y)

)
≤ c(ũ(x))p−1 + c(u(y))p−1

− and ũ1−q(x) ≤ d1−pũp−q(x).

Also, we have that (u(y))− vanishes for any y ∈ BR, thanks to the assumptions on u.

Thus, the following estimate holds true.

I2 + I3 ≤ c

∫

Rn\Br

∫

Br

ũp−1(x)η(x) dν̄ + c

∫

Rn\Br

∫

Br

(
u(y)

)p−1

− η(x) dν̄

≤ c

(
sup

z∈suppφ

∫

Rn\Br
K̄(z, y) dy + d1−p

∫

Rn\BR

(
u(y)

)p−1

− |y − x0|−n−sp dy

)
(5.3)

×
(∫

Br

wp(x)ϕp(x) dx

)
,

where we denoted by w := ũ
p−q
p .

Now, we consider the integrand of I1. In the case when ũ(x) > ũ(y) we can use the

following inequality, which is valid for any ε ∈ (0, 1),

ϕp(x) ≤ ϕp(y) + cp εϕ
p(y) + (1 + cpε) ε

1−p|ϕ(x)− ϕ(y)|p,

where cp = (p − 1)Γ(max{1, p − 2}); see Lemma 3.1 in [7]. For any δ ∈ (0, 1), we

choose

ε := δ
ũ(x)− ũ(y)

ũ(x)
∈ (0, 1)

and we get

K(x, y)|ũ(x)− ũ(y)|p−2(ũ(x)− ũ(y))

[
ϕp(x)

ũq−1(x)
− ϕp(y)

ũq−1(y)

]

≤ K(x, y)|ũ(x)− ũ(y)|p−2 (ũ(x)− ũ(y))

ũq−1(x)
ϕp(y)

[
1 + cpδ

ũ(x)− ũ(y)

ũ(x)
− ũq−1(x)

ũq−1(y)

]

+ cK(x, y)ũp−q(x)δ1−p|ϕ(x)− ϕ(y)|p.



NONLOCAL HARNACK INEQUALITIES 21

Note that the first term that appears in the inequality above can be rewritten as

follows

K(x, y)
(ũ(x)− ũ(y))p

(ũ(x))q
ϕp(y)


cpδ +

1− ũq−1(x)
ũq−1(y)

1− ũ(y)
ũ(x)


 =: J1.

For this, consider the real function t 7→ g(t) given by

g(t) :=
1− t1−q

1− t = −q − 1

1− t

∫ 1

t
τ−q dτ, ∀ t ∈ (0, 1).

Since q > 1, g(t) ≤ −(q − 1) for all t ∈ (0, 1). Moreover if t ∈ (0, 1/2] we have

g(t) ≤ − (q − 1)

2q
t1−q

(1− t) .

Therefore, it is convenient to distinguish now the case when 2ũ(y) ≤ ũ(x) and that

when 2ũ(y) > ũ(x). In the first case, take t = ũ(y)/ũ(x) ∈ (0, 1/2], so that, in view of

the considerations above, it yields

J1 ≤ K(x, y)
(ũ(x)− ũ(y))p

(ũ(x))q
ϕp(y)

(
cpδ −

q − 1

2q
ũq−1(x)

ũq−1(y)

ũ(x)

ũ(x)− ũ(y)

)

≤ K(x, y)
(ũ(x)− ũ(y))p−1

(ũ(y))q−1
ϕp(y)

(
cpδ −

q − 1

2q

)
,(5.4)

where we have also used that

(ũ(x)− ũ(y))ũq−1(y)

(ũ(x))q
≤ 1.

Choosing δ as

(5.5) δ =
q − 1

2q+1cp

the equation in (5.4) plainly yields

(5.6) J1 ≤ −K(x, y)
q − 1

2q+1

(ũ(x)− ũ(y))p−1

(ũ(y))q−1
ϕp(y).

Moreover, since we are assuming 2ũ(y) ≤ ũ(x), we have

(ũ(x)− ũ(y))p−1

(ũ(y))q−1
≥ 2q−1(ũ(x)− ũ(y))p−1

(ũ(x))q−1

≥ 2q−p(ũ(x))p−q

≥ 2q−p
(

(ũ(x))
p−q
p − (ũ(y))

p−q
p

)p
.

Finally, combining the preceding inequality together with (5.6), we obtain the follow-

ing estimate for J1 in the case when 2ũ(y) ≤ ũ(x),

(5.7) J1 ≤ −
q − 1

2p
K(x, y)(w(x)− w(y))pϕp(y).
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It remains to consider the case when 2ũ(y) > ũ(x). Firstly, in view of the choice of

the parameter δ in (5.5), we have

J1 ≤ K(x, y)
(ũ(x)− ũ(y))p

(ũ(x))q
ϕp(y)

(
cpδ − (q − 1)

)

= −(2q+1 − 1)
q − 1

2q+1
K(x, y)

(ũ(x)− ũ(y))p

(ũ(x))q
ϕp(y).

Now, observe that

(w(x)− w(y))p =

(
p− q
p

)p(∫ ũ(x)

ũ(y)
t
− q
p dt

)p

≤
(
p− q
p

)p 1

(ũ(y))q

(∫ ũ(x)

ũ(y)
dt

)p

=

(
p− q
p

)p (ũ(x)− ũ(y))p

(ũ(y))q

≤ 2q
(
p− q
p

)p (ũ(x)− ũ(y))p

(ũ(x))q
.

Hence, we get

(5.8) J1 ≤ −(2q+1 − 1)
q − 1

22q+1

(
p

p− q

)p
K(x, y)(w(x)− w(y))pϕp(y).

All in all, by comparing the estimates in (5.7) and (5.8), we obtained the following

estimate for the contribution in J1, when ũ(x) > ũ(y),

(5.9) J1 ≤ −cK(x, y)(w(x)− w(y))pϕp(y)

where

c = min

{
q − 1

2p+1
, (2q+1 − 1)

q − 1

22q+1

(
p

p− q

)p}
.

Observe that when ũ(x) = ũ(y), then the estimate (5.9) trivially holds.

On the other hand, in the case when ũ(y) > ũ(x), it suffices just to exchange the

roles of x and y in the whole computations made before. We finally arrive at

I1 ≤ −c
∫

Br

∫

Br

|w(x)− w(y)|p ϕp(y) dν

+ c

∫

Br

∫

Br

(max{w(x), w(y)})p|ϕ(x)− ϕ(y)|p dν̄.

Now, putting the inequality above and (5.3) in (5.2), we obtain
∫

Br

∫

Br

|w(x)− w(y)|p ϕp(y) dν

≤ c
∫

Br

∫

Br

(max{w(x), w(y)})p|ϕ(x)− ϕ(y)|p dν̄
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+c

(
sup

z∈suppϕ

∫

Rn\Br
K̄(z, y) dy

+d1−p
∫

Rn\BR

(
u(y)

)p−1

− |y − x0|−n−sp dy

)(∫

Br

wp(x)ϕp(x) dx

)
,

which, together with the fact that

|w(x)ϕ(x)− w(y)ϕ(y)|p ≤ c
(

max
{
w(x), w(y)

})p|ϕ(x)− ϕ(y)|p

+c |w(x)− w(y)|p ϕp(y),

yields the estimate (5.1). �

Now we are ready to prove Theorem 1.2 in a quite standard way.

Proof of Theorem 1.2. For simplicity of notation, we replace r by r/2 below compared

to the statement of the theorem. First, let 1/2 < σ′ < σ ≤ 3/4 and let ϕ ∈ C∞0 (Bσr)

be such that ϕ = 1 in Bσ′r and |Dϕ| ≤ 4/[(σ−σ′)r]. We apply the fractional Sobolev

inequality to the function wϕ, with w = ũ
p−q
p = (u + d)

p−q
p . Together with the

assumptions on the kernel K we get

(5.10)

(
−
∫

Br

|w(x)ϕ(x)|p∗ dx

) p
p∗
≤ c

rsp

rn

∫

Br

∫

Br

|w(x)ϕ(x)− w(y)ϕ(y)|p dν.

Moreover, we have
∫

Br

∫

Br

(
max

{
w(x), w(y)

})p|ϕ(x)− ϕ(y)|p dν̄ ≤ c r−sp

(σ − σ′)p
∫

Bσr

wp(x) dx,(5.11)

where we also used the fact that ϕ satisfies |Dϕ| ≤ 4/[(σ − σ′)r].
Finally, by combining (5.10) and (5.11) with (5.1), and recalling the definition

in (2.10), we get
(
−
∫

Br

|w(x)ϕ(x)|p∗ dx

) p
p∗

≤ c

{
1

(σ − σ′)p + d1−p
( r
R

)sp
[Tail(u−;x0, R)]p−1

}
−
∫

Br

wp(x) dx,(5.12)

where we also used that

sup
z∈suppϕ

∫

Rn\Br
K̄(z, y) dy ≤ c r−sp.

Choosing d as in Lemma 3.1, that is

(5.13) d :=
1

2

( r
R

) sp
p−1

Tail(u−;x0, R),

and ϕ ≡ 1 in Br/2 and recalling the definition of w, we deduce from (5.12)

(
−
∫

Bσ′r

ũ
(p−q) n

n−sp dx

)n−sp
n

≤ c

(σ − σ′)p −
∫

Bσr

ũp−q dx
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with c = c(n, p, s, q, λ,Λ). Now if q ∈ (1, p) by a standard finite Moser iteration (see,

e. g., Theorem 8.18 in [12] and also Theorem 1.2 in [26]), we can get

(5.14)

(
−
∫

Br

ũt dx

) 1
t

≤ c
(
−
∫

B3r/4

ũt
′

dx

) 1
t′

∀ 0 < t′ < t <
n(p− 1)

n− ps .

To get the desired result we have to apply Lemma 4.1 to ũ, noticing that it is a weak

supersolution to problem (1.1). Thus, by combining (4.1) with (5.14) for t′ = ε, we

obtain the following estimate for ũ

(
−
∫

Br/2

ũt dx

) 1
t

≤ c inf
B2r

ũ+ c
( r
R

) sp
p−1

Tail(ũ−;x0, R).

Finally, in order to arrive at (1.6), it is sufficient to notice that the following estimate

holds (
−
∫

Br/2

ut dx

) 1
t

≤
(
−
∫

Br/2

ũt dx

) 1
t

,

and to recall the definition of d given by (5.13). The proof is complete. �
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