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Abstract. Hadwiger’s Conjecture states that every k-chromatic graph has a complete minor5

of order k. A graph G′ is an inflation of a graph G if G′ is obtained from G by replacing each6

vertex v of G by a clique Cv and joining two vertices of distinct cliques by an edge if and only7

if the corresponding vertices of G are adjacent. We present an algorithm for computing an8

upper bound on the chromatic number χ(G′) of any inflation G′ of any 3-chromatic graph9

G. As a consequence, we deduce that Hadwiger’s Conjecture holds for any inflation of any10

3-colorable graph.11
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1 Introduction13

A proper k-coloring of a graph G is a function f ∶ V (G) → {1, . . . , k} such that f(v) ≠ f(u) whenever14

u and v are adjacent. The chromatic number χ(G) of G is the smallest k such that there is a proper15

k-coloring of G. A graph G is k-chromatic if χ(G) = k.16

Hadwiger’s Conjecture is one of the fundamental open questions in graph coloring. It dates back17

to 1943, when Hadwiger [7] suggested that every k-chromatic graph G contains a complete minor18

of order k, i.e. a complete graph of order k can be obtained from G by deleting and/or contracting19

edges.20

The conjecture is a far-reaching generalization of the well-known Four Color Problem, which21

asks if every planar graph has chromatic number at most 4, and it remains open for all k greater22

than 6. (See [15] for a survey on Hadwiger’s Conjecture.) The case k ≤ 4 was proved by Hadwiger23

in his original paper [7]. Wagner [16] proved that the case k = 5 is equivalent to the Four Color24
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E-mail address: carl.johan.casselgren@liu.se
Part of the work done while the author was a postdoc at University of Southern Denmark and at Mittag-Leffler
Institute. Research supported by SVeFUM and Mittag-Leffler Institute.

�Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55,
5230 Odense, Denmark.
E-mail address: asp@imada.sdu.dk

�Research Clinic on Gambling Disorders, Center for Functionally Integrative Neuroscience, Aarhus Uni-
versity Hospital, Trøjborgvej 72, Bygning 30, 8200 Aarhus N, Denmark.

1



Problem. The latter problem was solved in the affirmative by Appel and Haken [1, 2] in 1977, and25

in 1993 Robertson et al. [12] proved Hadwiger’s Conjecture for k = 6.26

Hadwiger’s Conjecture has also been proved to hold for some special families of graphs, e.g. line27

graphs [11] and quasi-line graphs [13]. Bollobás et al. [5] proved that Hadwiger’s Conjecture is true28

for almost every graph.29

In this paper we study Hadwiger’s Conjecture for inflations of graphs: given a graph G with30

vertex set V (G) = {v1, . . . , vn} and non-negative integers k1, . . . , kn, we define the inflation G′ =31

G(k1, . . . , kn) of G to be the graph obtained from G by replacing vertices v1, . . . , vn by disjoint32

cliques A1, . . . ,An of size k1, . . . , kn, respectively, such that vertices x and y, where x ∈ V (As) and33

y ∈ V (At), s ≠ t, are adjacent if and only if vs and vt are adjacent in G. The cliques A1, . . . ,An are34

referred to as the inflated vertices, and the numbers k1, . . . , kn are referred to as inflation sizes of35

G′. If k1 = ⋅ ⋅ ⋅ = kn, then G′ is a uniform inflation. We also say that G′ is obtained by inflating G.36

One motivation for studying Hadwiger’s Conjecture for inflations of graphs stems from Hajós’37

Conjecture which states that every k-chromatic graph contains a subdivision of the complete graph38

on k vertices. In 1979, Catlin [6] showed that this latter conjecture is false for all values of k greater39

than 6. Catlin’s counterexamples are surprisingly simple: they are just uniform inflations of the40

5-cycle. Catlin’s counterexamples to Hajós’ Conjecture are not counterexamples to Hadwiger’s Con-41

jecture, but perhaps a similar construction might yield a counterexample to Hadwiger’s Conjecture.42

Thomassen [14] proved that a graph G is perfect if and only if every inflation of G satisfies Hajós’43

Conjecture. In particular, this means that any non-perfect graph can be inflated to a counterex-44

ample to Hajós’ Conjecture. We prove that no counterexample to Hadwiger’s Conjecture can be45

constructed by inflating a 3-colorable graph.46

There are some other results on Hadwiger’s Conjecture for inflations of graphs in the literature:47

Plummer et al. [10] proved that no counterexample to Hadwiger’s Conjecture can be obtained by48

inflating a graph with independence number at most 2 (complements of triangle-free graphs) and49

order at most 11. Kawarabayashi conjectured that Hadwiger’s Conjecture holds for any inflation50

of a outerplanar graph [private communication to Pedersen, 2012]. Since every outerplanar graph51

is 3-colorable, the main result of this paper settles that conjecture in the affirmative. Pedersen [9]52

proved that Hadwiger’s Conjecture holds for any inflation of the Petersen graph. Here we prove the53

following stronger proposition.54

Theorem 1. Hadwiger’s Conjecture is true for any inflation of any 3-colorable graph.55

2 Proof of Theorem 156

Let η(G) denote the Hadwiger number of G, i.e., the order of the largest complete minor of G.57

Hadwiger’s Conjecture then states that η(G) ≥ χ(G) for every graph G. In this section we will58

prove that for any inflation G′ of any 3-colorable graph G, we have η(G′) ≥ χ(G′).59

Inflations of graphs are studied in e.g. [3, 4]. Therein the authors were, among other things,60

interested in determining the chromatic number of (uniform) inflations. Here we do not attempt to61

calculate the chromatic number of such graphs explicitly; rather we obtain an upper bound on the62

chromatic number of any (possibly non-uniform) inflation G′ of any 3-colorable graph G and give a63

lower bound on the Hadwiger number of G′.64

Suppose that G′ is an inflation of G with inflation sizes k1, k2, . . . , ks. We denote by Gk1,k2,...,kt65

the subgraph of G induced by the vertices which are replaced by cliques with sizes in the set66

{k1, k2, . . . , kt} in G′. Similarly, G′k1,k2,...,kt denotes the subgraph of G′ induced by all cliques with67

sizes in {k1, k2, . . . , kt} that correspond to vertices of G.68

2



Given two graphs G1 and G2 such that V (G1)∩V (G2) ≠ ∅, we define the intersection of G1 and69

G2, denoted by G1 ∩G2, as the graph with vertex set V (G1)∩V (G2) and edge set E(G1)∩E(G2).70

Similarly, we define the union of G1 and G2, denoted by G1 ∪ G2, as the graph with vertex set71

V (G1) ∪ V (G2) and edge set E(G1) ∪E(G2).72

In the following we will present an algorithm for computing an upper bound on the chromatic73

number χ(G′) of any inflation G′ of any 3-chromatic graph G. By analyzing this algorithm we will74

then be able to prove that Hadwiger’s Conjecture is true for any inflation of any 3-colorable graph.75

We shall need some preliminary results. The following was noted by Albertson et al. [3].76

Lemma 1. Let G be a graph, and G′ the inflation obtained from G by replacing each vertex by a77

clique of size k. Then, χ(G′) ≤ kχ(G).78

If G is a graph and G′ an inflation of G, then an edge e = uv of G is called an αβ-edge if in G′ u79

and v are replaced by cliques of size α and β, respectively. Similarly, a vertex in G which is replaced80

by a clique of size α in G′ is called an α-vertex. We will use the following observation, which easily81

follows from the well-known fact that the chromatic number of a graph equals the maximum of the82

chromatic numbers of its blocks, and so we leave the proof to the reader.83

Lemma 2. Let G be a graph and let Ec denote a set of cut-edges in G. Suppose that G′ is some
inflation of G. Denote by H the graph G − Ec, and let H ′ denote the subgraph of G′ obtained by
removing all edges corresponding to edges of Ec. Then

χ(G′) ≤max ({χ(H ′)} ∪ {α + β ∣ e ∈ Ec is an αβ-edge})

We shall repeatedly apply the following consequence of Lovasz’ Perfect Graph Theorem [8].84

Theorem 2. Every inflation of a perfect graph is perfect.85

Proof of Theorem 1. Suppose the result is false. Let G be a vertex-minimal graph with chromatic86

number at most 3 such that there is an inflation G′ of G that is a counterexample to Hadwiger’s87

Conjecture. Moreover, let G′ be vertex-minimal with respect to the property of being an inflation of88

G that is a counterexample to Hadwiger’s Conjecture. It is straightforward to see that G must be 2-89

connected. Suppose that G is 2-colorable. By Theorem 2, any inflation of a perfect graph is perfect90

and so χ(G′) = ω(G′) ≤ η(G′), a contradiction to the assumption that G′ is a counterexample to91

Hadwiger’s Conjecture. Hence, we may assume that G is 3-chromatic.92

Let a1 be the largest inflation size of G′. If χ(Ga1) = 3, then it follows from Lemma 1 that93

χ(G′) ≤ 3a1. Furthermore, η(G′) ≥ 3a1, because Ga1 contains a cycle. Hence, η(G′) ≥ χ(G′)94

which contradicts that G′ is a counterexample to Hadwiger’s Conjecture. Thus, we conclude that95

χ(Ga1) ≤ 2. Since χ(G) = 3, this means that a1 is not the only inflation size of G′.96

Let a1, . . . , am, b1, . . . , bn denote the inflation sizes in G′, where

a1 > ⋅ ⋅ ⋅ > am > b1 > ⋅ ⋅ ⋅ > bn,

and χ(Ga1,...,am) ≤ 2 while χ(Ga1,...,am,b1) = 3.97

Let A denote the set {a1, . . . , am}, and let S be the set of all ordered pairs (ai, aj) of A with98

ai ≥ aj for which there is an aiaj-edge in G. Since χ(Ga1,...,am) ≤ 2, Theorem 2 yields that99

χ(G′a1,...,am) =max({ai + aj ∣ (ai, aj) ∈ S} ∪ {a1, . . . , am}). (1)

We define the graph G′′a1,...,am to be the graph obtained from G′a1,...,am by removing b1 vertices
from each of the inflated vertices of Ga1,...,am . Similarly, we set bn+1 = 0, and, for each i ∈ [n], we

3



let G′′a1,...,am,b1,...,bi
denote the graph obtained from G′a1,...,am,b1,...,bi

by removing bi+1 vertices from
each of the inflated vertices of G′a1,...,am,b1,...,bi

in such a way that G′′a1,...,am,b1,...,bi
is a subgraph of

G′′a1,...,am,b1,...,bj
whenever i < j. (This is possible since G′a1,...,am,b1,...,bi

⊆G′a1,...,am,b1,...,bj
and bi > bj if

i < j.) As a shorthand, we will often write

G≥bi ,G
′

≥bi
, and G′′

≥bi

for the graphs
Ga1,...,am,b1,...,bi ,G

′

a1,...,am,b1,...,bi and G′′a1,...,am,b1,...,bi ,

respectively. The analogue of (1) for G′′
≥am then reads100

χ(G′′
≥am) =max({ai + aj − 2b1 ∣ (ai, aj) ∈ S} ∪ {a1 − b1, . . . , am − b1}). (2)

Below we shall give our algorithm for computing a useful upper bound on the chromatic number101

of G′. First we discuss it informally:102

The algorithm proceeds by steps and at Step i of the algorithm (1 ≤ i ≤ n) it considers the graph103

G≥bi , and defines the sets Ai+1 from Ai, Si+1 from Si, the set Ti+1 from Ti, and the auxiliary sets104

S ′i , A
′

i, A
′′

i and T ′i . Each step consists of the three parts (a), (b) and (c), and at each such part105

certain sets are defined.106

At the beginning of Step 1 we have A1 ∶= A, S1 ∶= S, and T1 ∶= ∅. Then at Step i (1 ≤ i ≤ n) the107

set Si+1 is constructed from Si by adding a new element (α, bi) if108

� α ∈ Ai,109

� there is no α-vertex in a cycle of G≥bi , and110

� there is an αbi-edge in G≥bi ,111

and removing any element (α,β) such that there is an αβ-edge on a cycle in G≥bi .112

The set Ai+1 is constructed from Ai at Step i by removing any element α such that there is an113

α-vertex on a cycle in G≥bi .114

Finally, the set Ti+1 is constructed from Ti at Step i by adding any element (α,β, bi) such that115

there is an αβ-edge in a cycle of G≥bi , and adding every element (α, bi, bi) such that there is an116

α-vertex in a cycle of G≥bi , and there is no β > bi, such that there is an αβ-edge in a cycle of G≥bi .117

Note that if (α,β) ∈ Sj ∖Sj+1, then j is the minimum integer q such that there is an αβ-edge in118

a cycle of G≥bq , and one might think of the set Si+1 as “the set of pairs (α,β) such that α ≥ β and119

α ≥ am, and for which there is an αβ-edge in G≥bi but no cycle containing an αβ-edge”. Similarly,120

one might think of the set Ai+1 as “the set of all constants α ≥ am for which there is an α-vertex121

in G≥bi but no cycle containing an α-vertex”. Note further that since G is 2-connected, for each122

α ∈ Ai, there is some minimum integer j such that G≥bj contains a cycle with an α-vertex. A similar123

statement holds for the elements of Si.124

Let us now give a formal description of the algorithm:125
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Algorithm 1126

Step 0: Define A1 ∶= A, S1 ∶= S, and T1 ∶= ∅.127

Step 1:128

(a) For each element (aj1 , aj2) of S1, if there is an aj1aj2-edge on a cycle in G≥b1 , then129

include (aj1 , aj2) in S
′

1.130

(b) For each element aj of A1:131

● If there is an aj-vertex on a cycle in G≥b1 , then include aj in A′1.132

● If there is an aj-vertex on a cycle in G≥b1 and no element aj1 ∈ {a1, . . . , am} such133

that there is an ajaj1-edge on a cycle in G≥b1 , then include (aj , b1, b1) in T ′1 .134

● If there is no aj-vertex on a cycle in G≥b1 but there is an ajb1-edge in G≥b1 , then135

include aj in A′′1 .136

(c) Define137

● S2 ∶= (S1 ∖ S ′1) ∪ {(aj , b1) ∣ aj ∈ A
′′

1},138

● A2 ∶= A1 ∖A
′

1,139

● T2 ∶= T1 ∪ {(aj1 , aj2 , b1) ∣ (aj1 , aj2) ∈ S
′

1} ∪ T
′

1 ∪ {(b1, b1, b1)},140

and go to Step 2.141

Step i (2 ≤ i ≤ n):142

(a) For each element (α,β) of Si, if there is an αβ-edge on a cycle in G≥bi , then include143

(α,β) in S ′i .144

(b) For each element aj of Ai:145

● If there is an aj-vertex on a cycle in G≥bi , then include aj in A′i.146

● If there is an aj-vertex on a cycle in G≥bi and no element α ∈ {a1, . . . , am, b1, . . . , bi−1}147

such that there is an ajα-edge on a cycle in G≥bi , then include (aj, bi, bi) in T ′i .148

● If there is no aj-vertex on a cycle in G≥bi , but there is an ajbi-edge in G≥bi , then149

include aj in the set A′′i .150

(c) Define151

● Si+1 ∶= (Si ∖ S ′i) ∪ {(aj , bi) ∣ aj ∈ A
′′

i },152

● Ai+1 ∶= Ai ∖A
′

i,153

● Ti+1 ∶= Ti ∪ {(α,β, bi) ∣ (α,β) ∈ S ′i} ∪ T
′

i ,154

and go to Step (i + 1) if i ≤ n − 1, otherwise Stop.155

We now prove some properties of the algorithm. The algorithm stops after Step n when the sets156

Sn+1,An+1 and Tn+1 have been defined.157

158

Lemma 3.159

(1) A1 ⊇ A2 ⊇ . . . ⊇ An+1.160
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(2) The sets A′1, . . . ,A
′

n−1, and A
′

n are all disjoint.161

(3) T1 ⊆ T2 ⊆ ⋅ ⋅ ⋅ ⊆ Tn+1.162

Proof. (1): The inclusions follow directly from the description of the algorithm, in particular, part163

(c) of Steps 0,1, . . . , n.164

(2): Suppose that a is some element of A′j1 ∩ A
′

j2
with j1 < j2. By part (b) of Step j2, a ∈ Aj2 .165

Since also a ∈ A′j1 , it follows from part (c) of Step j1 that a is not in Aj1+1 and so, by (1), a166

is not in Aj2, a contradiction.167

(3) The inclusions follow directly from part (c) of Steps 0,1, . . . , n.168

169

Lemma 4. At the end of Step i of the algorithm, the following holds:170

χ(G′
≥bi) ≤ max({α + β + γ ∣ (α,β, γ) ∈ Ti+1}

∪ {α + β + bi+1 ∣ (α,β) ∈ Si+1}
∪ {aj + 2bi+1 ∣ aj ∈Ai+1}). (3)

Proof. For each i ∈ [n], let Ei denote the set of all αβ-edges in G≥bi with (α,β) ∈ Si+1. For each171

i ∈ [n], let Vi denote the set of all α-vertices of G≥bi with α ∈ Ai+1. Define Hi ∶= G≥bi −Ei − Vi.172

The following three claims are easily deduced from the description of the algorithm.173

Claim 1. For each i ∈ [n] and each αβ-edge e of G≥bi with (α,β) ∈ Si, the edge e is in Hi if and174

only if there is an αβ-edge on a cycle in G≥bi .175

Claim 2. For every i ∈ [n], each edge of Ei is a cut-edge of G≥bi .176

Claim 3. For each i ∈ [n] and each α-vertex v of G≥bi with α ∈ Ai, the vertex v is in Hi if and only177

if there is an α-vertex on a cycle in G≥bi .178

Claim 4. For each i ∈ [n], each vertex of Vi is an isolated vertex of G≥bi −Ei.179

Proof of Claim 4. Suppose that there is some edge uv in E(G≥bi) ∖Ei with v ∈ Vi. Since v ∈ Vi, v180

is an α-vertex for some α ∈ Ai+1, and, by Claim 3, this means that there is no α-vertex on a cycle181

in G≥bi .182

The edge uv is an αβ-edge where neither (α,β) nor (β,α) is in Si+1, since otherwise uv would183

be in Ei. If α,β ≥ am, then (α,β) ∈ S1 or (β,α) ∈ S1, by the definition of S1 = S, and if β = br for184

some 1 ≤ r < j, then (α,β) ∈ Sr+1 according to part (b) and (c) of Step r. In both cases we must185

have that either (α,β) or (β,α) is in S ′j for some j < i + 1, because otherwise (α,β) or (β,α) is in186

Si+1. However, according to part (a) of Step j, this happens only if there is an αβ-edge on a cycle187

in G≥bj . This clearly contradicts the fact that there is no α-vertex on a cycle in G≥bi .188

Next, we define H ′′i to be the graph obtained from G′′
≥bi

by removing all edges corresponding189

to edges in Ei and all vertices corresponding to vertices in Vi. So H ′′i is the subgraph of G′′
≥bi

190

corresponding to the subgraph Hi of G≥bi .191
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Instead of proving (3), we prove, by induction, that the following stronger statement holds for
every integer i ∈ [n]:

χ(G′′
≥bi) ≤max({α + β + γ − 3bi+1 ∣ (α,β, γ) ∈ Ti+1}

∪ {α + β − 2bi+1 ∣ (α,β) ∈ Si+1}
∪ {aj − bi+1 ∣ aj ∈ Ai+1}), (4)

and

χ(H ′′i ) ≤max{α + β + γ − 3bi+1 ∣ (α,β, γ) ∈ Ti+1}. (5)

The subgraph G′
≥bi
−V (G′′

≥bi
) of G′

≥bi
is a bi+1-inflation of a 3-colorable graph, and so, by Lemma 1,192

χ(G′
≥bi
− V (G′′

≥bi
)) ≤ 3bi+1. This along with (4) implies that (3) holds.193

We first prove that (4) and (5) hold for i = 1.194

Claim 5. The upper bounds (4) and (5) hold for i = 1.195

Proof of Claim 5. We shall first give an upper bound on χ(G′′
≥am ∩H

′′

1 ) and then extend this to196

an upper bound on χ(H ′′1 ), thus establishing that (5) hold for i = 1. Of course, G≥am ∩H1 is a197

subgraph of G≥am , and G≥am is a 2-colorable graph, in particular, it is a perfect graph. Thus, by198

Theorem 2, G′′
≥am ∩H

′′

1 is a perfect graph, and so χ(G′′
≥am ∩H

′′

1 ) = ω(G
′′

≥am ∩H
′′

1 ). Since G′′
≥am ∩H

′′

1199

is an inflation of the triangle-free graph G≥am ∩H1 it follows that any largest clique in G′′
≥am ∩H

′′

1200

corresponds to a single vertex or a pair of adjacent vertices in G≥am ∩H1. Thus, χ(G′′
≥am ∩H

′′

1 ) is201

at most202

max ({α + β − 2b1 ∣ αβ-edge in G≥am ∩H1} ∪ {α − b1 ∣ α-vertex in G≥am ∩H1}) . (6)

By Claim 1, an αβ-edge e of G≥am with (α,β) ∈ S1 is in H1 if and only if there is an αβ-edge203

on a cycle in G≥b1 . According to part (a) of Step 1, an element (α,β) ∈ S1 = S is in S ′1 if and only204

if there is an αβ-edge on a cycle in G≥b1 .205

Similarly, by Claim 3, an α-vertex v of G≥am with α ∈ A1 is in H1 if and only if there is an206

α-vertex on a cycle in G≥b1 . According to part (b) of Step 1, an element α ∈ A1 = A is in A′1207

if and only if there is an α-vertex on a cycle in G≥b1 . Hence, by (6) we may now conclude that208

χ(G′′
≥am ∩H

′′

1 ) is at most209

max ({α + β − 2b1 ∣ (α,β) ∈ S ′1} ∪ {α − b1 ∣ α ∈A
′

1}) . (7)

For any element α of A′1 for which there is an element aj ∈ {a1, . . . , am} such that there is an210

αaj-edge on a cycle in G≥b1 , (α,aj) or (aj , α) is included in S ′1, and so, since α + aj − 2b1 ≥ α − b1,211

the value of (7) is unaffected by removing such an element α − b1 from the second set in (7). By212

part (b) of Step 1, for any element α of A′1 for which there is no aj ∈ {a1, . . . , am} such that G≥b1213

contains an αaj-edge on a cycle, the element (α, b1, b1) is included in T ′1 . Thus, χ(G
′′

≥am ∩H
′′

1 ) is at214

most215

max ({α + β − 2b1 ∣ (α,β) ∈ S ′1} ∪ {α − b1 ∣ (α, b1, b1) ∈ T
′

1}) . (8)

Since G′′
≥b1
− V (G′′

≥am) is an inflation of a 3-colorable graph with inflation sizes at most b1 − b2, it216

follows from Lemma 1 that χ(G′′
≥b1
− V (G′′

≥am)) ≤ 3(b1 − b2). Thus, since H ′′1 is a subgraph of G′′
≥b1

,217

we also have χ(H ′′1 − V (G
′′

≥am)) ≤ 3(b1 − b2). Thus, combining optimal colorings of H ′′1 − V (G
′′

≥am)218

and G′′
≥am ∩H

′′

1 using disjoint sets of colors for a coloring of H ′′1 , we deduce that219

χ(H ′′1 ) ≤max ({α + β + b1 − 3b2 ∣ (α,β) ∈ S ′1} ∪ {α + 2b1 − 3b2 ∣ (α, b1, b1) ∈ T
′

1} ∪ {3b1 − 3b2}) . (9)
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Since, by part (c) of Step 1,

T2 = T1 ∪ {(aj1 , aj2 , b1) ∣ (aj1 , aj2) ∈ S
′

1} ∪ T
′

1 ∪ {(b1, b1, b1)},

it follows that220

χ(H ′′1 ) ≤max{α + β + γ − 3b2 ∣ (α,β, γ) ∈ T2}, (10)

which means that (5) holds for i = 1.221

Let I ′′ denote the subgraph of G′′
≥b1

corresponding to the edge-induced subgraph G≥b1[E1] of222

G≥b1 . By Claim 2, each edge in E1 is a cut-edge of G≥b1 , and so, G≥b1[E1] is a forest, in particular,223

it is a 2-colorable graph and, hence a perfect graph. Thus, by Theorem 2, I ′′ is a perfect graph,224

and so the chromatic number of I ′′ is equal to the clique number of I ′′. This implies that225

χ(I ′′) ≤max{α + β − 2b2 ∣ αβ-edge in E1}. (11)

Recall that E1 is the set of all αβ-edges in G≥b1 with (α,β) ∈ S2. Thus,226

χ(I ′′) ≤max{α + β − 2b2 ∣ (α,β) ∈ S2}. (12)

Let J ′′ denote the subgraph G′′
≥b1
− V (H ′′1 ) − V (I

′′) of G′′
≥b1

. Note that any component in J ′′227

corresponds to an isolated vertex of G≥b1 that is in V1. Recall that V1 is the set of all α-vertices in228

G≥b1 with α ∈ A2. This implies that the chromatic number of J ′′ is at most229

max{aj − b2 ∣ aj ∈ A2}. (13)

Putting (10), (12), and (13) together and using Lemma 2, we may now deduce that (4) holds for230

i = 1 in the following way:231

First we properly color the graph H ′′1 with at most the number of colors in the right hand side232

of (10). Then by using Lemma 2 for the edges of I ′′, which correspond to edges of E1, we may233

properly color the graph H ′′1 ∪ I
′′ using at most234

max({α + β + γ − 3b2 ∣ (α,β, γ) ∈ T2} ∪ {α + β − 2b2 ∣ (α,β) ∈ S2})

colors. Finally, we can color the vertices of J ′′ using at most

max({aj − b2 ∣ aj ∈A2})

colors. This completes the proof of the claim.235

We now prove that (4) and (5) hold in the general case.236

Claim 6. The upper bounds (4) and (5) hold for any i ∈ [n].237

Proof of Claim 6. Our induction hypothesis is that the following holds:

χ(G′′
≥bi−1) ≤max({α + β + γ − 3bi ∣ (α,β, γ) ∈ Ti}

∪ {α + β − 2bi ∣ (α,β) ∈ Si}
∪ {aj − bi ∣ aj ∈Ai}), (14)

and

χ(H ′′i−1) ≤max{α + β + γ − 3bi ∣ (α,β, γ) ∈ Ti}. (15)
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The basis for the induction was established in Claim 5. We are going to be using much the same238

approach as in the proof of Claim 5. First we give an upper bound on χ(G′′
≥bi−1

∩H ′′i ) and then239

extend this to an upper bound on χ(H ′′i ).240

Recall that Ei is the set of all αβ-edges in G≥bi with

(α,β) ∈ Si+1 = (Si ∖ S ′i) ∪ {(γ, bi) ∣ γ ∈ A
′′

i }

and that Vi is the set of all α-vertices v of G≥bi with α ∈Ai+1 = Ai ∖A
′

i. Furthermore, we have that241

Hi = G≥bi −Ei − Vi, and H ′′i is the subgraph of G′′
≥bi

corresponding to Hi.242

Consider the graph G≥bi−1 ∩Hi. Since Ai+1 ⊆ Ai and Si+1 ⊆ Si ∪ {(γ, bi) ∣ γ ∈ A′′i }, it holds that243

Hi−1 ⊆Hi, and thus Hi−1 is a subgraph of G≥bi−1 ∩Hi.244

Suppose that e is an αβ-edge of Ei−1. This means that (α,β) ∈ Si; also by Claim 2 there is no245

αβ-edge on a cycle in G≥bi−1 . Moreover, by part (c) of Step i, (α,β) ∈ Si+1, and thus e ∈ Ei, unless246

(α,β) ∈ S ′i , which by part (a) means that there is an αβ-edge in a cycle of G≥bi . Hence e ∈ E(Hi)247

if and only if (α,β) ∈ S ′i .248

Now consider an α-vertex v ∈ Vi−1. Clearly, α ∈ Ai; also by Claims 2 and 4, there is no α-vertex249

on a cycle of G≥bi−1 . Moreover, by part (c) of Step i, α ∈ Ai+1, and thus v ∈ Vi, unless α ∈A
′

i, which250

by part (b) means that there is an α-vertex on a cycle in G≥bi . Hence v ∈ V (Hi) if and only if251

α ∈ A′i.252

Now, any edge of Ei−1 is a cut-edge of G≥bi−1 , and any vertex of Vi−1 is an isolated vertex of253

G≥bi−1 −Ei−1 (by Claims 2 and 4). So for the inflation G′′
≥bi−1

∩H ′′i it now follows from (15) and by254

applying Lemma 2 that255

χ(G′′
≥bi−1 ∩H

′′

i ) ≤ max({α + β + γ − 3bi ∣ (α,β, γ) ∈ Ti}
∪ {α + β − 2bi ∣ (α,β) ∈ S ′i}
∪ {au − bi ∣ au ∈ A′i}). (16)

Let us now prove the following:256

Subclaim 1. If au ∈ A
′

i, then either (au, bi, bi) in T ′i , or there is an α ∈ {a1, . . . , am, b1, . . . , bi−1},257

such that (au, α) ∈ S ′i or (α,au) ∈ S
′

i.258

Proof of Subclaim 1. Suppose that au is some element of A′i. By part (b) of Step i, au ∈ Ai, and259

so, by Lemma 3 (1), au ∈ Aq for any q < i. By Lemma 3 (2), au ∉ A
′

q for any q < i. Thus i is the260

minimum integer q such that there is an au-vertex on a cycle in G≥bq .261

Suppose that (au, bi, bi) ∉ T ′i . Then it follows from part (b) of Step i that there is an auα-edge262

e on a cycle in G≥bi for some α ∈ {a1, . . . , am, b1, . . . , bi−1}. We shall prove that (au, α) ∈ S ′i or263

(α,au) ∈ S ′i . Since there is an auα-edge e on a cycle in G≥bi for some α ∈ {a1, . . . , am, b1, . . . , bi−1},264

the desired result will follow from part (a) of Step i if we can prove that (au, α) ∈ Si or (α,au) ∈ Si.265

Thus in the following we will argue that (au, α) or (α,au) is in Si. We shall distinguish between266

two cases: α ∈ {a1, . . . , am} and α ∈ {b1, . . . , bi−1}.267

(i) Suppose α ∈ {a1, . . . , am}. Then, at least one of the elements (au, α) and (α,au) must be in268

S1, since S1 = S and, by definition, S contains all ordered pairs (ai, aj) of A with ai ≥ aj for269

which there is an aiaj-edge in G.270

Suppose (au, α) is in S1. Assume that (au, α) is not in Si. Then (au, α) is included in S ′p271

at Step p of the algorithm for some p < i. By part (a) of Step p, this means that there is272

an auα-edge on a cycle in G≥bp . This, however, is a contradiction to the fact that i is the273

minimum integer q for which there is an au-vertex on a cycle in G≥bq . Hence (au, α) ∈ Si.274

9



If (α,au) ∈ S1, then a similar argument shows that (α,au) ∈ Si.275

(ii) Suppose α ∈ {b1, . . . , bi−1}, say α = bp for some p ∈ [i − 1].276

The integer i is the minimum integer q such that there is an au-vertex on a cycle in G≥bq and277

thus G≥bp has no cycle with an aubp-edge. Moreover, by part (b) of Step p, au is included in278

A′′p . Now, by part (c) of Step p, (au, bp) is included in Sp+1.279

The rest of the argument goes along the same lines as in (i): Assume that (au, bp) is not in Si.280

Then (au, bp) is included in S ′k at some step k of the algorithm for some integer k satisfying281

p < k < i. But this means that there is an aubp-edge on a cycle in G≥bk . This, however, is a282

contradiction to the fact that i is the minimum integer q for which there is an au-vertex on283

a cycle in G≥bq . Hence (au, bp) ∈ Si.284

Subclaim 1 along with (16) implies285

χ(G′′
≥bi−1 ∩H

′′

i ) ≤ max({α + β + γ − 3bi ∣ (α,β, γ) ∈ Ti}
∪ {α + β − 2bi ∣ (α,β) ∈ S ′i}
∪ {au − bi ∣ au ∈ T ′i }), (17)

It follows from Lemma 1 that any proper coloring of G′′
≥bi−1

∩H ′′i can be extended to a proper286

coloring of H ′′i by using at most 3(bi − bi+1) new colors, because the graph H ′′i − V (G
′′

≥bi−1
∩H ′′i ) is287

an inflation of a 3-colorable graph with inflation sizes at most 3(bi − bi+1). That fact along with288

(17) implies289

χ(H ′′i ) ≤ max({α + β + γ − 3bi+1 ∣ (α,β, γ) ∈ Ti} ∪ {α + β + bi − 3bi+1 ∣ (α,β) ∈ S ′i}
∪ {aj + 2bi − 3bi+1 ∣ (aj , bi, bi) ∈ T ′i }), (18)

Note that, since Ti+1 = Ti ∪ {(α,β, bi) ∣ (α,β) ∈ S ′i} ∪ T
′

i , (18) implies that (5) holds. By290

Claim 2, every edge in Ei is a cut-edge of G≥bi , so the edge-induced subgraph G≥bi[Ei] is a forest,291

in particular, it is a perfect graph. Thus, by Theorem 2, the subgraph I ′′i of G′′
≥bi

corresponding to292

G≥bi[Ei] satisfies293

χ(I ′′i ) = ω(I
′′

i ) ≤max{α + β − 2bi+1 ∣ (α,β) ∈ Si ∖ S ′i} ∪ {α + bi − 2bi+1 ∣ α ∈ A
′′

i }. (19)

Finally, let J ′′i denote the subgraph G′′
≥bi
− V (H ′′i ) − V (I ′′i ). Clearly, any component of J ′′294

corresponds to an isolated vertex of G≥bi that is in Vi. Thus295

χ(J ′′i ) ≤max{α − bi+1 ∣ α ∈ Ai ∖A
′

i}. (20)

Putting (18)-(20) together and applying Lemma 2 we now deduce that296

χ(G′′
≥bi) ≤ max({α + β + γ − 3bi+1 ∣ (α,β, γ) ∈ Ti+1}

∪ {α + β − 2bi+1 ∣ (α,β) ∈ Si+1}
∪ {α − bi+1 ∣ α ∈ Ai+1},

which implies that (4) holds.297

It now follows by induction that (4) and (5) hold for every i ∈ [n].298

The statement of the lemma now follows from (4), since, as pointed out above, for any i ∈ [n],299

the inequality (3) follows from (4).300
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Lemma 5. At the end of Step n, the sets Sn+1 and An+1 are empty.301

Proof. We first consider the sets S1, . . . ,Sn+1. According to the description of the algorithm, Si+1 is302

constructed from Si at Step i by removing any element (α,β) from Si for which there is an αβ-edge303

on a cycle in G≥bi , and adding any element (α, bi) for which304

(i) α ∈ Ai305

(ii) there is an αbi-edge of G≥bi , and306

(iii) there is no αbi-edge on a cycle in G≥bi .307

Note that by part (b) and (c) of Step 1, . . . , i, α is in Ai if and only if α ∈ {a1, . . . , am} and there308

is no α-vertex in a cycle of G≥bi . Since G is 2-connected, every edge (and vertex) of G lies on a309

cycle in G, and since G = G≥bn , this means that Sn+1 is empty.310

According to the description of the algorithm, Ai+1 is constructed from Ai at Step i by removing311

any element aj from Ai such that there is an aj-vertex that lies on a cycle in G≥bi . Again, since G312

is 2-connected, any vertex of G = G≥bn lies on a cycle, which implies the desired result.313

Lemma 6. For each (α,β, γ) ∈ Tn+1, G′ contains a complete minor of size α + β + γ.314

Proof. By Lemma 3 (3), T1 ⊆ T2 ⊆ ⋅ ⋅ ⋅ ⊆ Tn+1. Let j be the minimum integer such that (α,β, γ) ∈ Tj.315

By the definition of Tj in part (c) of Step (j − 1), (α,β, γ) must be in one of the sets

{(α′, β′, bj−1) ∣ (α′, β′) ∈ S ′j−1}

and T ′j−1. Moreover, by the definition of these sets in part (a) and (b) of Step (j − 1), γ is not316

greater than α or β.317

Suppose (α,β, γ) ∈ {(α′, β′, bj−1) ∣ (α′, β′) ∈ S ′j−1}, that is, (α,β) ∈ S ′j−1. Then, γ = bj−1 and318

there exists an αβ-edge on a cycle C of G≥bj−1 . The inflated cycle in G′
≥bj−1

corresponding to C can319

be contracted to a complete graph on α + β + bj−1 vertices, and so η(G′) ≥ α + β + γ.320

Now suppose (α,β, γ) ∈ T ′j−1. Then, by definition of T ′j−1, we have β = γ = bj−1 and α ∈ A′j−1,321

that is, there is an α-vertex on a cycle C in G≥bj−1 . The inflated cycle in G′
≥bj−1

corresponding to C322

can be contracted to a complete graph on α + 2βj−1 vertices, and so η(G′) ≥ α + β + γ.323

By Lemma 4 and 5, χ(G′) ≤max{α+β+γ ∣ (α,β, γ) ∈ Tn+1}, and so, by Lemma 6, η(G′) ≥ χ(G′).324

Thus, G′ is not a counterexample to Hadwiger’s Conjecture, and we have obtained a contradiction325

from which the theorem follows.326

Algorithm 1 together with the proof of Lemma 4 can be used to produce a proper coloring ϕ of327

any inflation of any 2-connected 3-chromatic graph such that the number of colors used in ϕ is at328

most max{α+β +γ ∣ (α,β, γ) ∈ Tn+1}. (The case when the graph is not 2-connected can be handled329

by Lemma 2.) Since a triple (α,β, bj) is in Ti+1 at Step i of the algorithm, where j ≤ i, if and only330

there is an α-vertex and a β-vertex in G that are adjacent and lie on a cycle C of G, which satisfies331

that every vertex in C is replaced by a clique of size at least bj in G′, we in fact have that the332

number of colors used in ϕ is at most333

max{α + β + γ ∣ there is an αβ-edge in G that lies on a cycle where

every vertex is replaced by a clique of size at least γ}.
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