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Abstract

For 1 ≤ ` < k, an `-overlapping k-cycle is a k-uniform hypergraph in which, for some cyclic

vertex ordering, every edge consists of k consecutive vertices and every two consecutive edges

share exactly ` vertices.

A k-uniform hypergraphH is `-Hamiltonian saturated ifH does not contain an `-overlapping

Hamiltonian k-cycle but every hypergraph obtained from H by adding one edge does contain

such a cycle. Let sat(n, k, `) be the smallest number of edges in an `-Hamiltonian saturated

k-uniform hypergraph on n vertices. In the case of graphs Clark and Entringer showed in 1983

that sat(n, 2, 1) = d 3n
2
e. The present authors proved that for k ≥ 3 and ` = 1, as well as for

all 0.8k ≤ ` ≤ k − 1, sat(n, k, `) = Θ(n`). In this paper we prove two upper bounds which

cover the remaining range of `. The first, quite technical one, restricted to ` ≥ k+1
2

, implies

in particular that for ` = 2
3
k and ` = 3

4
k we have sat(n, k, `) = O(n`+1). Our main result

provides an upper bound sat(n, k, `) = O(n
k+`
2 ) valid for all k and `. In the smallest open

case we improve it further to sat(n, 4, 2) = O(n
14
5 ).

1 Introduction

Given integers 1 ≤ ` < k, we define an `-overlapping k-cycle as a k-uniform hypergraph (k-

graph for short) in which, for some cyclic ordering of its vertices, every edge consists of k consec-

utive vertices, and every two consecutive edges (in the natural ordering of the edges induced

by the ordering of the vertices) share exactly ` vertices. The notion of an `-overlapping k-

path is defined similarly, that is, with vertices ordered v1, . . . , vs, the edges of the path are

{v1, . . . , vk}, {vk−`+1, . . . , vk+`}, . . . , {vs−k+1, . . . , vs}, Note that the number of edges of an `-

overlapping k-cycle with s vertices is s/(k − `) (and thus, s is divisible by k − `). Similarly, it can

be easily seen that the number of vertices s of an `-overlapping k-path equals ` modulo k − `.

∗Research supported by the Polish NSC grant N201 604940 and the NSF grant DMS-1102086. Part of research

performed during a visit to the Institut Mittag-Leffler (Djursholm, Sweden).
†Research partially supported by the Polish Ministry of Science and Higher Education.
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We denote an `-overlapping k-cycle on s vertices by C
(k,`)
s . We further denote by g := g(k, `)

the number of vertices between any two consecutive disjoint edges belonging to an `-overlapping

path (or cycle) and notice that

0 ≤ g =

⌈
k

k − `

⌉
(k − `)− k < k − ` < k, (1)

and that g = 0 if and only if k − ` divides k.

An `-overlapping Hamiltonian k-cycle in a n-vertex k-graph H is defined as any subhyper-

graph of H isomorphic to C
(k,`)
n . If H contains an `-overlapping Hamiltonian k-cycle then H itself

is called `-Hamiltonian.

Given a k-graph H and a k-element set e ∈ Hc, where Hc =
(
V
k

)
\H is the complement of

H, we denote by H + e the hypergraph obtained from H by adding e to its edge set. A k-graph

H is `-Hamiltonian saturated, 1 ≤ ` ≤ k − 1, if H is not `-Hamiltonian but for every e ∈ H c the

k-graph H + e is such. The largest number of edges in an `-Hamiltonian saturated k-graph on n

vertices is called the Turán number for the cycle C
(k,`)
n . In [2] this number has been determined

in terms of the Turán number of a (k − 1)-uniform path with a constant number of vertices.

In this paper we are interested in the other extreme. For n divisible by k − `, let sat(n, k, `)

be the smallest number of edges in an `-Hamiltonian saturated k-graph on n vertices. In the case

of graphs, Clark and Entringer proved in 1983 that sat(n, 2, 1) = d 3n
2 e for n ≥ 52.

For k-graphs with k ≥ 3 the problem was first mentioned in [3, 4]. It seems to be quite hard

to obtain such precise results as for graphs. Therefore, the emphasis has been put on the order of

magnitude of sat(n, k, `). The present authors proved in [5] that for k ≥ 3 and ` = 1, as well as

for all 0.8k ≤ ` ≤ k − 1,

sat(n, k, `) = Θ(n`), (2)

see also [6] for the case ` = k − 1.

The facts that (2) holds for very small and very large (with respect to k) values of ` and

that no better lower bound is known suggest, as conjectured already in [5], that (2) holds for all

1 ≤ ` ≤ k − 1 and k ≥ 2.

Our first result provides an upper bound on sat(n, k, `) higher than the conjectured O(n`),

but for a broader range of ` than in [5].

Theorem 1 For all k ≥ 3 and ` ≥ k+1
2

sat(n, k, `) = O
(
n`+2g+1

)
.

Of course, this bound is good only when g is small, and when g = 0 it is only by a factor of n

worse than the conjectured optimum. All cases of Theorem 1 which are not covered by the result

from [5], but for which g = 0, are given in the following corollary.

Corollary 2 For every k divisible by three and ` = 2
3k, as well as for every k divisible by four and

` = 3
4k, we have sat(n, k, `) = O(n`+1).

In the remaining range of `, that is, for 2 ≤ ` ≤ k/2, nothing else than the trivial upper

bound

sat(n, k, `) = O(nk)
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and the easy lower bound ([5, Prop. 2.1])

sat(n, k, `) = Ω
(
n`
)

have been known. Our main result in this paper provides a first, non-trivial, general upper bound

on sat(n, k, `).

Theorem 3 For all k ≥ 3 and 2 ≤ ` ≤ k − 1,

sat(n, k, `) = O
(
n

k+`
2

)
.

One consequence of Theorem 3, combined with the case ` = k− 1 of (2), is that for all ` and k we

have

sat(n, k, `) = O
(
nk−1

)
.

In view of Theorem 3, the bound in Theorem 1 is not overwritten only when `+ 2g + 1 ≤ k+`−1
2 ,

equivalently, when g ≤ (k − `− 1)/4.

Theorems 1 and 3 are proved, respectively, in Sections 3 and 4. In the smallest open case,

k = 4, ` = 2, we improve Theorem 3 a bit by showing the following result in Section 5.

Theorem 4 sat(n, 4, 2) = O
(
n

14
5

)
.

Our proofs expand and refine a general approach to this type of problems first developed in

[6] and modified in [5]. In short, we begin with constructing two k-graphs, H ′ and H ′′, such that

H ′ is not `-Hamiltonian, while H ′′ ⊃ H ′ contains some “troublemaking” edges. Then we define H

as a maximal non-`-Hamiltonian k-graph satisfying H ′ ⊆ H ⊆ H ′′. It then remains to show that

for every e 6∈ H, H + e is `-Hamiltonian, but, what is crucial, in doing so we may restrict ourselves

to e 6∈ H ′′.

In [6] the constructions of H ′ and H ′′ were based on a special partition of the vertex set,

while in [5] we used blow-ups of sparse Hamiltonian saturated graphs. In this paper we return to

both these ideas: we use the approach from [5] in the proof of Theorem 1, and the approach from

[6] in the proofs of Theorems 3 and 4.

2 Preliminaries

Our proofs utilize the following special construction of a k-graph. Given a partition of the vertex

set V =
⋃h

i=1 Ui, for a subset S ⊆ V , let

tr(S) = {i : Ui ∩ S 6= ∅}

and

min(S) = min{i : i ∈ tr(S)} = min{i : Ui ∩ S 6= ∅}.

Let

Hk,`(U1, . . . , Uh) := Hk,` =

{
e ∈

(
V

k

)
: |e ∩ Umin(e)| ≥ k − `+ 1

}
.

For further use, note that

|tr(e)| ≤ ` for every e ∈ Hk,`. (3)
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For i = 1, . . . , h, let

Ci = {e ∈ Hk,` : min(e) = i}.
Obviously, Hk,` = C1 ∪ · · · ∪ Ch.

Define an `-component of a k-graph H as a minimal subset of edges C ⊆ H such that for all

e ∈ C and f ∈ H \ C, we have |e ∩ f | < `.

Proposition 5 For each i = 1, . . . , h, the set Ci is an `-component of Hk,`.

Proof. By the definition ofHk,`, for every e ∈ Ci and f ∈ Cj , where i < j, we have |e∩Ui| ≥ k−`+1

and f ∩ Ui = ∅, and so |e ∩ f | < `. Moreover, for every e ∈ Ci there is an f ∈ Ci, f 6= e such that

|e ∩ f | ≥ k − 1 ≥ ` (just switch one vertex without violating the membership in Ci), so that Ci

satisfies the minimality condition in the definition of an `-component. 2

Since every `-overlapping k-path in a k-graph H must be entirely contained in one the `-

components of H, we have the following corollary of Proposition 5.

Corollary 6 For every `-overlapping k-path P in Hk,` there is an i ∈ {1, . . . , h} such that P ⊆ Ci,

or equivalently, for every edge e of P , we have min(e) = i.

We now investigate the maximum length of an `-overlapping k-path in Ci, i < h, which

traverses through exactly x vertices of Ui. Our next, purely combinatorial, result provides an easy

upper bound, independent of `. Given a positive integer x, let A and B be two disjoint sets, with

|A| = x and |B| = ∞. Let ν(x) = maxP |V (P )|, where the maximum is taken over all `-overlapping

paths P with A ⊂ V (P ) ⊂ A ∪B and |e ∩A| ≥ k − `+ 1 for all e ∈ P .

Proposition 7 For every x ≥ k − 2, we have ν(x) ≤ kx.

Proof. Suppose there is a path P with A ⊂ V (P ) ⊂ A ∪B, |e ∩A| ≥ k − `+ 1 for all e ∈ P , and

|V (P )| ≥ kx + 1. Let us view V (P ) as a binary sequence, where each vertex of A is replaced by

symbol a and each vertex of V (P ) ∩ B is replaced by symbol b. If there is a pair of consecutive

symbols a in the sequence then, by averaging, there is a run (=a sequence of consecutive symbols)

of at least
(k − 1)x+ 1

x
> k − 1,

that is, of at least k symbols b. But then there is an edge of P with at most k − ` vertices of A –

a contradiction. If, on the other hand, there are no consecutive symbols a in the sequence then,

again by averaging, there is a run of at least

(k − 1)x+ 1

x+ 1
> k − 2,

that is, of at least k−1 symbols b (here we use the assumption x ≥ k−2). Thus, there is a segment

b · · · bab where the run of b′s is of length k − 1. The first (from the left) edge of P whose leftmost

end is in this run may have at most k − ` symbols a – a contradiction, again. 2

We also have the following lower bound on ν(x).

Proposition 8 For every x ≥ (k − 3)(k − 1)

ν(x) ≥ x+

⌊
x

k − 1

⌋
+ 3− k.
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Proof. Let a sequence Q begin with a vertex in B and then traverse, alternately, groups of k − 1

vertices of A followed by one vertex of B until fewer than k−1 vertices of A are left. The remaining

vertices of A are placed all at one end of Q. Clearly, every k-tuple of consecutive vertices of Q

contains k − 1 ≥ k − ` + 1 vertices of A. To turn Q into an `-overlapping path, the number of

vertices of Q must equal ` modulo k−`. Therefore, we may be forced to drop up to k−`−1 ≤ k−2

vertices of B from Q. This is possible as

|Q ∩B| =
⌊

x

k − 1

⌋
+ 1 ≥ k − 2,

by our assumption on x. The obtained path has the required properties and the claimed number

of vertices. 2

Note that ν(x) is a nondecreasing function of x (just replace any vertex of B with a new

vertex of A). Our next observation shows that it cannot increase too fast.

Proposition 9 For all x ≥ 1 we have ν(x− 1) ≥ ν(x)− k.

Proof. Consider a longest path P of length ν(x) and remove its first (from the left) s vertices,

where ` ≤ s ≤ k and s = ν(x) mod k−`. As there must be a vertex of A among the first ` vertices

of any edge, the remaining path P ′ satisfies x′ := |V (P ′)∩A| ≤ x− 1 and, by the monotonicity of

ν(x) we have

ν(x)− k ≤ ν(x)− s ≤ ν(x′) ≤ ν(x− 1).

2

Returning to the hypergraph Hk,`, Propositions 7-9 imply the following corollary.

Corollary 10 Let i < h, k2 ≤ x ≤ |Ui|, A ⊂ Ui, |A| = x, and B ⊂ ⋃j>i Uj, |B| ≥ (k−1)x. Then

the length of a longest path P in Ci such that A ⊂ V (P ) ⊂ A ∪B equals ν(x). Moreover, we have

ν(x)− k ≤ ν(x− 1) ≤ ν(x) and
k

k − 1
x− k < ν(x) ≤ kx.

In addition to the basic construction Hk,`, the proof of Theorem 1 relies on the notion of a

(hypergraph) blow-up of a graph which will be defined soon. First, however, we recall a simple fact

about graphs proved in [5, Fact 2.2]. For a graph G, let c(G) denote the number of components of

G. Given a subset T ⊆ V (G), let G[T ] be the subgraph of G induced by T .

Fact 11 ([5]) Let k, `, and ∆ be constants, and for n = 1, 2, . . . , let Gn be a graph with n vertices

and ∆(Gn) ≤ ∆. Then the number of k-element subsets T ⊆ V (Gn) with c(G[Tn]) ≤ ` is O(n`).

Given a graph G and an integer sequence a = (a1, . . . , an), the a-blow-up of G is the k-graph

H := H[G] with

V (H) =

n⋃

i=1

Ui, |Ui| = ai,

H =
⋃

ij∈G

K(k)(Ui ∪ Uj)
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where K(k)(U) is the complete k-graph on U and the sets Ui are pairwise disjoint. For a subset

S ⊂ V (H), let

tr(S) = {i ∈ V (G) : Ui ∩ S 6= ∅}.

Furthermore, set

c(S) = c (G[tr(S)]) .

The following immediate corollary of Fact 11 has been already noted in [5, Cor. 2.3].

Corollary 12 ([5]) Let a1, . . . , an, k, `, and ∆ be constants. If ∆(Gn) ≤ ∆ and Hn = H[Gn] is

the a-blow-up of Gn then the number of k-element subsets S ⊆ V (Hn) with c(S) ≤ ` is O(n`). 2

3 Proof of Theorem 1

In this section we prove Theorem 1, where the construction of an `-Hamiltonian saturated k-graph

is based on a blow-up of a suitably chosen Hamiltonial saturated graph.

Our proof is a substantial modification of the proof of Theorem 1.1 in [5]. Specifically, we

have made the range of ` in (7) broader (it used to be 2k − ` + 1 ≤ ai ≤ 4` − 2k + 1) and, at

the same time, we altered the definition of H2 (by introducing the cores U i). In what follows, we

assume that

g ≤ k − `− 1

4
, (4)

since otherwise `+ 2g + 1 ≥ (k + `)/2 and Theorem 1 follows from Theorem 3.

We begin with a technical inequality.

Proposition 13 If k+1
2 ≤ ` ≤ k − 1 then 2k − `− 2g − 2 ≤ 2`− 2.

Proof. The inequality in question is equivalent to

3`+ 2g ≥ 2k, (5)

To prove (5), note that, by the assumptions on `, there exists some integer a ≥ 1 such that

ak + 1

a+ 1
≤ ` <

(a+ 1)k + 1

(a+ 1) + 1
≤ 2ak + 1

2a+ 1
.

Then, by the lower bound on `,

g =

⌈
k

k − `

⌉
(k − `)− k ≥

⌈
k

k − (ak + 1)/(a+ 1)

⌉
(k − `)− k

=

⌈
k

k − 1
(a+ 1)

⌉
(k − `)− k ≥ (a+ 2)(k − `)− k.

Hence, by the upper bound on `, we finally have

3`+ 2g ≥ (2a+ 2)k − (2a+ 1)` > 2k − 1,

which implies (5). 2
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It follows from Proposition 13, as in [5], that every sufficiently large integer N can be ex-

pressed as a sum

N = a1 + · · ·+ an, (6)

for some n, where

2k − `− 2− 2g ≤ ai ≤ 2`− 1, i = 1, . . . , n. (7)

(This is because the range of ai in (7) has at least two consecutive values.)

Fix a large integer N which is divisible by (k − `) and let a = (a1, . . . , an), where the ai’s

and n are as in (7). Note that N = Θ(n). Let Gn be an n-vertex Hamiltonian saturated graph

with ∆(Gn) = O(1), and let

H1 = H[Gn]

be the a-blow-up k-graph of Gn (see the definition in Section 2) with

V = V (H1) =

n⋃

i=1

Ui, where |Ui| = ai, i = 1, . . . , n.

Thus, by (6),

|V | = N =

n∑

i=1

ai.

It is easy to check that (4) implies that ai ≥ k − `, for all i = 1, . . . , n. Fix a (k − `)-subset U i of

Ui, i = 1, . . . , n, and let

H2 =

{
e ∈

(
V

k

)
: |e ∩ Umin(e)| ≥ k − l + 1, e ⊃ Umin(e) and c(e) ≥ g + 2

}
.

Since H2 ⊆ Hk,`, by (3), for every e ∈ H2 we have, in fact,

2 ≤ g + 2 ≤ c(e) ≤ |tr(e)| ≤ `. (8)

(Note that (4) implies that, indeed, g ≤ ` − 2, which guarantees that H2 is nonempty.) We have

the following immediate consequence of the definition of H2 and Corollary 6.

Corollary 14 If P is a path in H2, then there is i ∈ {1, . . . , n} such that for every e ∈ P we have

|e ∩ Ui| ≥ k − `+ 1 and e ⊃ U i. In particular, each path in H2 has at most b k
k−`c edges. 2

Observe also that for each e ∈ H1, the set tr(e) is either a vertex or an edge of G. Consequently,

c(e) = 1 and the k-graphs H1 and H2 are edge-disjoint. Set H ′ = H1 ∪H2

Lemma 15 H ′ is not `-Hamiltonian.

Proof. Suppose that H ′ contains an `-Hamiltonian k-cycle CH = (e1, . . . , em). Unlike in [5], the

proof breaks only into two cases:

Case 1. CH ⊆ H1: We omit the proof in this case, as it is identical to Case 1 of the proof of

Lemma 4.1 in [5] (Indeed that proof relied only on the assumption that ai ≤ 2`− 1.)

Case 2. H2 ∩ CH 6= ∅: Let (w.l.o.g.) e1, . . . , es−1 be a maximal segment in CH of consecutive

edges from H2. By Corollary 14, s− 1 ≤ b k
k−`c and there exists an index i ∈ {1, . . . , n} such that

e1 ∩ es−1 ⊇ U i, and thus |e1 ∩ es−1| ≥ |U i| = k − `. (9)
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Let Z be the set of vertices that lie between em and es on CH . Formally,

Z =

(
s−1⋃

t=1

et

)
\ (em ∪ es).

Then e1 ⊆ em ∪ Z ∪ es and, consequently,

{i} ⊆ tr(e1) ⊆ tr(em) ∪ tr(Z) ∪ tr(es). (10)

What is more, em ∩ Ui 6= ∅ and es ∩ Ui 6= ∅. Since em ∈ H1 and es ∈ H1, by the definition of H1,

each of tr(em) and tr(es) is either the singleton {i} or an edge of G containing vertex i. Hence,

by (10), c(e1) ≤ 1 + |Z|, which combined with the bound g + 2 ≤ c(e1) from the definition of H2,

yields

|Z| ≥ g + 1. (11)

This further implies that em and es are disjoint, but more importantly, that e1 and es are disjoint

too (since em and es cannot be consecutive disjoint edges). Thus, s ≥ 3 and

|Z| ≤ 2(k − `)− |e1 ∩ es−1| ≤ k − `, (12)

by (9). Note, however, that due to the structure of `-overlapping k-paths,

|Z| = g + t(k − `) for some t ≥ 0. (13)

Therefore, by (13), (12) and (11), |Z| = k−` (and g = 0). Consequently, by (12), |e1∩es−1| = k−`,

implying that, in fact, e1 ∩ es−1 = Z = U i. But then (10) becomes

{i} ⊆ tr(e1) ⊆ tr(em) ∪ tr(es),

and hence, c(e1) = 1 – a contradiction with the definition of H2. 2

Let

H ′′ =

{
e ∈

(
V

k

)
: c(e) ≤ `+ 2g + 1

}
.

Recall thatH1 = H[Gn] is the a-blow-up k-graph of a Hamiltonian saturated n-vertex graph Gn. It

means that for all e ∈ H1 we have c(e) = 1, while, by (8), for all e ∈ H2 we have c(e) ≤ |tr(e)| ≤ `.

Thus, H ′ = H1 ∪H2 ⊆ H ′′.

Finally, let H be a maximal non-`-Hamiltonian k-graph on V such that H ′ ⊆ H ⊆ H ′′. In

view of Lemma 25, H does exist. By Corollary 12,

|H| ≤ |H ′′| = O(N `+2g+1). (14)

Thus, to complete the proof of Theorem 1, it remains to show the following lemma.

Lemma 16 For every e ∈ Hc, H + e is `-Hamiltonian.

Proof. By the maximality of H, H + e is `-Hamiltonian for each e ∈ H ′′ \ H. Hence, we may

restrict ourselves only to e ∈ (H ′′)c, that is, such that c(e) ≥ `+2g+2. Let us fix one such e. Let

j1, j2, . . . , j`+2g, y, and x = min(e) belong to `+2g+2 different components of G[tr(e)] and satisfy

min{j1, j2, . . . , j`+2g} > y > x. (15)
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Let rx = |e ∩ Ux| and ry = |e ∩ Uy|. Note that, since |tr(e)| ≥ c(e) ≥ `+ 2g + 2,

max{rx, ry} ≤ max
1≤i≤n

|e ∩ Ui| ≤ k − (|tr(e)| − 1) ≤ k − `− 2g − 1. (16)

We will build an `-overlapping Hamiltonian cycle CH in H+e using the Hamiltonian satura-

tion of Gn. Let (u1, . . . , uN ) be the vertices of V in the order as they will appear on the CH under

construction. Our goal is to define this ordering so that each segment of k consecutive vertices

which begins at ui, where i ≡ 1 ( mod k − `), is an edge of H + e. We will denote by e1 the edge

beginning at u1, by e2 – the edge beginning at u1+k−` and so on, until the last edge em of CH

which begins at uN−k+`+1, where m = N
k−` .

To achieve our goal, we will first construct an `-overlapping path P ⊆ H2 + e, extending e

in both directions, and using only the vertices of Ux and Uy, one type at each end of e. Then,

we will connect the endsets of P by an `-overlapping path P ′ ⊆ H1, covering all the remaining

vertices and, thus, creating, together with P , an `-overlapping Hamiltonian cycle in H + e. The

construction of P ′ will be facilitated by tracing a Hamiltonian path in G connecting x and y.

To construct P , let e1 := e and order the vertices of e1 = (u1, . . . , uk) so that the first

rx vertices belong to Ux, the last ry vertices belong to Uy, and the ` − ry vertices immediately

preceding the ry vertices of Uy ∩ e1 all belong to sets Uj with j > y. (We know from (15) that

there are more than enough such vertices in e1.) In other words, we request that

{u1, . . . , urx} ⊂ Ux, (17)

{uk−ry+1, . . . , uk} ⊂ Uy, (18)

min
(
{uk−`+1, . . . , uk−ry}

)
> y. (19)

The remaining vertices of e1 are labeled arbitrarily by urx+1, . . . , uk−`.

Our plan is to extend e1 in either direction, but only for as long as the new edges still

intersect e1. This means that we will have in P precisely

κ :=

⌈
l

k − `

⌉

new edges, and thus, precisely

κ(k − `) = g + `

new vertices on each side of e1, where the last equality follows from (1).

Formally, we set

V (P ) = {uN−`−g+1, . . . , uN , u1, . . . , uk, uk+1, . . . , uk+g+`}

and

E(P ) = {e1} ∪ {em+1−i : i = 1, . . . , κ} ∪ {e1+i : i = 1, . . . , κ} ,
where, recall, the edge ej begins at the vertex u1+(j−1)(k−`).

We request that all vertices of P to the left of e1 belong to Ux and all vertices to the right

of e1 belong to Uy, that is,

{uN−`−g+1, . . . , uN , u1, . . . , urx} ⊆ Ux and {uk−rx+1, . . . , uk, uk+1 . . . , uk+g+`} ⊆ Uy, (20)

This is possible, since, by (16) and (7).

min (|Ux \ e|, |Uy \ e|) ≥ 2k − `− g − 2− (k − `− 2g − 1) = k + g − 1 ≥ `+ g.

9



We also request that

{uN−k+`+1, . . . , urx} ⊇ Ux and {uk−ry+1, . . . , u2k−`} ⊇ Uy. (21)

This can be easily accommodated, as each of these sets contains precisely k−` vertices from outside

of e1. Note that P is, trivially, an `-overlapping path in the complete k-graph on V . We will show

that, in fact, P ⊆ H2 + e.

Suppose first that m + 1 − κ ≤ j ≤ m. Then, by the definition of x, min(ej) = x. By our

construction (see (17), (20), and (21)), |ej ∩ Ux| ≥ k − `+ 1 and ej ⊇ Ux. The same is true for ej

with j = 2, . . . , κ+ 1, if we replace x by y (see (18), (19),(20), and (21)).

To conclude that P ⊆ H2 + e, it remains to show that c(ej) ≥ g + 2 for each ej , j 6= 1. As,

clearly, |ej \ e1| ≤ `+ g, we also have

|e1 \ ej | ≤ `+ g. (22)

Trivially, c(e1) ≤ c(e1 \ ej) + c(e1 ∩ ej). Moreover, tr(ej) = tr(e1 ∩ ej). Therefore, by the choice

of e = e1 and (22),

c(ej) = c(e1 ∩ ej) ≥ c(e1)− c(e1 \ ej) ≥ c(e1)− |e1 \ ej | ≥ `+ 2g + 2− (`+ g) = g + 2.

Thus ej ∈ H2 for each ej ∈ P , j 6= 1.

Now we will build the rest of CH using only the edges of H1. Recall that x and y belong to

different components of tr(e) and, hence, xy 6∈ G. Therefore, by the Hamiltonian saturation of G,

there is a Hamiltonian path Q = (v1 = y, v2, . . . , vn−1, vn = x) from y to x in G. We connect the

two `-element endsets of P by an `-overlapping path P ′ = (eκ+2, . . . , em−κ) in H1 ⊆ H which, by

tracing Q, “swallows” all the remaining N − |V (P )| vertices of V .

Set U ′
v = Uv \ V (P ), v ∈ V (G), and

R :=
⋃

v∈V (G)

U ′
v.

Observe that

|R| = N − |V (P )| = N − 2κ(k − `)− k = N − 2(g + `)− k.

Let us order the elements R so that all elements of U ′
vi

precede all elements of U ′
vi+1

, for i =

1, . . . , n − 1, and denote this ordering by (uk+g+`+1, . . . , uN−g−`). The vertex set of P ′ is then

defined as

V (P ′) = {uk+g+1, . . . , uk+g+`, uk+g+`+1, . . . , uN−g−`, uN−g−`+1, . . . , uN−g}.

Note that for v 6∈ {x, y}, by (7) and (16),

|U ′
v| ≥ |Uv| − (k − `− 2g − 1) ≥ k − 1.

Hence, every edge of P ′ stretches over at most two sets Uv and each such two sets are always

indexed by adjacent vertices of G. This implies that P ′ ⊆ H1. 2
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4 Proof of Theorem 3

In this section we prove Theorem 3, where the construction of an `-Hamiltonian saturated k-graph

is based on a special partition of the vertex set into q + 1 sets U1, . . . , Uq+1 (q to be chosen), and

the associated with it notion of the hypergraph Hk,`(U1, . . . , Uq+1), introduced at the beginning

of Section 2.

Recall that the function ν(x) has been defined in Section 2. Given a large integer n divisible

by k − `, choose integers α = Θ
(
n1/2

)
, β = Θ

(
n1/2

)
, p = Θ

(
n1/2

)
, and

q =

⌊
p(k + 2g) + (p− 1)ν

α

⌋
+ 2, (23)

where g = g(k, `) is given by (1) and ν := ν(α), such that

α ≥ 10k3p, (24)

β ≥ kα,

and

n = (q − 1)α+ β + p(k − 2) + k − 3. (25)

To see that such a choice is feasible, one may set, for instance, α = d2k2
√
ne. Recall that,

by Proposition 7, α ≤ ν ≤ kα. Next, choose p = bn/νc − k − 1. Then, first of all, (24) holds.

Furthermore, using (23) and the estimates g ≤ k, 2p ≥ k − 3, and 4kp ≤ α among others, we can

sandwich the quantity

n− β = (q − 1)α+ p(k − 2) + k − 3

as follows:

n− (k + 3)ν ≤ ν(p− 1) ≤ n− β ≤ 4kp+ α+ n− (k + 2)ν ≤ n− kα.

Thus, there exists an integer β, kα ≤ β ≤ (k + 3)α, which satisfies (25). Note that, in particular,

by (23) and Proposition 8,

q ≥ p+ 2k + 1. (26)

Let

V =

q+1⋃

i=1

Ui,

where

|Ui| = α for i = 1, . . . , q − 1, |Uq| = β and |Uq+1| = p(k − 2) + k − 3,

and all sets Ui, i = 1, . . . , q + 1, are pairwise disjoint.

We begin our construction of the required `-Hamiltonian saturated k-graph H, by letting

H1 = Hk,`(U1, . . . , Uq+1).

Recall from Section 2 thatH1 breaks naturally into q+1 `-components, that is, H1 = C1∪· · ·∪Cq+1.

Thus, every path in H1 is entirely contained in some Ci, and, by Corollary 10, for all i ≤ q − 1

such paths are no longer than kν ≤ k2α. On the other hand, by the definition of Ci, the vertex

set of every path contained in Cq ∪Cq+1 must be a subset of Uq ∪Uq+1. Therefore, in view of our

assumptions on β, p and α, we have the following conclusion.
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Corollary 17 The length of a longest path in H1 is O(
√
n). In particular, H1 is not `-Hamiltonian.

2

Following the outline described in the Introduction, we build a k-graph H ′ by slightly en-

riching H1, but so that it still remains non-`-Hamiltonian. Let

H2 =

{
e ∈

(
V

k

)
: |e ∩ Uq+1| ≥ k − 2

}
(27)

and H ′ = H1 ∪H2.

Lemma 18 H ′ is not `-Hamiltonian.

Proof. Suppose that C is an `-overlapping Hamiltonian cycle in H ′. Let M be a maximal set of

disjoint edges in C ∩H2. By Corollary 17, M 6= ∅. Set t := |M |. Since

|Uq+1| = p(k − 2) + k − 3 < (p+ 1)(k − 2),

we have t ≤ p.

From C we now extract t vertex disjoint paths, all contained in H1, as follows. For every

e ∈ M , denote by N(e) the union of the set of vertices of e, the set of g consecutive vertices lying

just before e, and the set of g consecutive vertices lying just after e (here, ‘before’ and ‘after’ refer

to an arbitrarily fixed direction of traversing C). Let W =
⋃

e∈M N(e). Then C[V \W ] consists of

at most t paths (we treat a nonempty set of fewer than k consecutive isolated vertices as a single

trivial path). Observe that

|W | ≤ t(k + 2g). (28)

Since each obtained path P is contained in H1, either min(V (P )) ≤ q− 1 or V (P ) ⊆ Uq ∪Uq+1. If

all t paths are of the former kind, then their total number of vertices is at most tν, and otherwise,

it is at most (t− 1)ν + |Uq|+ |Uq+1|. Note that, since |Uq| = β ≥ kα ≥ ν, we have

max{tν, (t− 1)ν + |Uq|+ |Uq+1|} ≤ (t− 1)ν + |Uq|+ |Uq+1|. (29)

Finally, by (23), (28), and (29), and using t ≤ p, we get

n = |V (C)| ≤ |W |+ (t− 1)ν + |Uq|+ |Uq+1|
≤ p(k + 2g) + (p− 1)ν + |Uq|+ |Uq+1|
< (q − 1)α+ |Uq|+ |Uq+1| = n,

which is a contradiction. Hence, there is no `-overlapping Hamiltonian cycle in H ′. 2

Before we finalize our construction, we need one more piece of notation. For each e ∈
(
V
k

)

with |tr(e)| ≥ 2, let

min2(e) = min{i : (e \ Umin(e)) ∩ Ui 6= ∅}. (30)

Finally, set

H3 =

{
e ∈

(
V

k

)
: |tr(e)| ≥ 2 and min2(e) ≥ q − 2k

}
,

12



H ′′ = H1 ∪H2 ∪H3,

and let H be a maximal non-`-Hamiltonian k-graph such that H ′ ⊆ H ⊆ H ′′. By Lemma 18, such

a k-graph H exists.

Fact 19

|H| = O(n(k+`)/2)

Proof. By the definitions of H and H ′′,

|H| ≤ |H ′′| ≤ |H1|+ |H2|+ |H3|.

Now, noticing that max1≤i≤q+1 |Ui| = β, we have

|H1| ≤
q+1∑

i=1

( |Ui|
k − `+ 1

)
·
(

n

`− 1

)
≤ (q + 1) · βk−`+1 · n`−1 = O

(
n(k+`)/2

)
,

|H2| ≤
( |Uq|
k − 2

)
·
(
n

2

)
≤ βk−2 · n2 = O

(
n(k+2)/2

)
, and

|H3| ≤
q∑

i=1

k−1∑

t=1

(|Ui|
t

)
·
(|Uq−2k|+ · · ·+ |Uq+1|

k − t

)
= O

(
q · αt · βk−t

)
= O

(
n(k+1)/2

)
,

where i = min(e) and t = |e ∩ Umin(e)|. 2

To complete the proof of Theorem 3, it remains to show the following lemma.

Lemma 20 For every e ∈
(
V
k

)
\H the k-graph H + e is `-Hamiltonian.

Proof. Fix e ∈
(
V
k

)
\H. If e ∈ H ′′, then, by the definition of H, H+e is `-Hamiltonian. Therefore,

we may assume that e 6∈ H ′′. This implies that |tr(e)| ≥ 2, since otherwise e ∈ H1. Define

x = min(e) and y = min2(e).

Since e 6∈ H1 ∪H3, we have |Ux ∩ e| ≤ k − ` and x < y ≤ q − 2k − 1.

Our ultimate goal is to construct in H an `-overlapping Hamiltonian cycle C. Recalling (26),

let J = {j1, . . . , jp−2} be the set of the p− 2 smallest indices in the set {1, . . . , q− 2k− 1} \ {x, y}.
Further, let

ri = |e ∩ Ui|, i = 1, . . . , q + 1.

Since e 6∈ H2, we have rq+1 ≤ k − 3. Thus |Uq+1 \ e| ≥ p(k − 2). Let us now set aside p disjoint

(k − 2)-element subsets B1, . . . , Bp of Uq+1 \ e and let

B =

p⋃

i=1

Bi.

Note that

|Uq+1 \ (B ∪ e)| = k − 3− rq+1 ≤ k. (31)

Furthermore, let us also put aside a set Q = Aq ∪ A′
q of 2(g + 1) elements of Uq \ e, where

|Aq| = |A′
q| = g + 1. The vertices in B and Q will be used later in our construction.
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First, however, we construct p vertex disjoint paths Pj1 , . . . , Pjp−2
, Pxy and Pq. Together,

these p paths will contain all elements of V , except for some k− `+ g+1 vertices of Ux, the same

number of vertices of Uy, twice as many vertices of each Uj , j ∈ J , and except for the vertices in

B ∪Q. Using these exceptional vertices, the paths will be connected by p ‘bridges’, made mostly

of the edges of H2, to form an `-overlapping Hamiltonian cycle C in H.

Construction of Pxy. Order the vertices of e so that the set e ∩ Ux constitutes the leftmost

segment of e, while the rightmost vertex of e belongs to Uy. Next, we will extend e in both

directions (see Fig. 1). Let A′
x be a set of arbitrary k − `+ g vertices of Ux \ e and Ay be a set of

arbitrary k − `+ g vertices of Uy \ e (the reader should not worry, we will later construct sets Ax

and A′
y too). Let

R =

q−1⋃

i=q−2k

Ui \ e.

Further, for each z ∈ {x, y}, let Pz ⊆ Cz be a path containing precisely

αz := α− rz − (2k − 2`+ 2g + 1)

vertices of Uz \ (e ∪ A′
x ∪ Ay) and ν(αz) − αz vertices of R, where V (Px) ∩ V (Py) = ∅. Since, by

Proposition 7, each of Px and Py requires no more than (k−1)α vertices of R, while |R| ≥ 2kα−k,

we will not run out of the vertices of R.

To finish the construction of Pxy, we extend e

• to the left, by adding the set A′
x, followed by Px, and

• to the right, by adding the set Ay, followed by Py.

Thus,

V (Pxy) = V (Px) ∪A′
x ∪ e ∪Ay ∪ V (Py) ⊂ Ux ∪ Uy ∪ e ∪R .

Set

Ax = Ux \ V (Pxy) and A′
y = Uy \ V (Pxy)

and observe that

|Ax| = |A′
y| = k − `+ g + 1 . (32)

Fact 21

Pxy ⊆ H1 + e

Proof. The path Pxy consists, besides the edges of Px, Py, and e itself, also of a set A of 2d k
k−`e

additional edges, d k
k−`e on each side of e. These are precisely those edges of Pxy which intersect

the set A′
x ∪ Ay. Thus, to prove that Pxy ⊆ H1 + e, it remains to show that each edge from A

belongs to H1.

Let us consider an edge e′ intersecting A′
x. Obviously, min(e′) = x. Also, |e′ ∩ A′

x| ≥ k − `,

and so |e′ ∩ Ux| ≥ k − `. Furthermore, if |e′ ∩A′
x| = k − ` then either e′ contains also the leftmost

vertex of e (which belongs to Ux), or |e′ ∩ V (Px)| = `. In the latter case, recall that each edge of
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Figure 1: Construction of Pxy

Px contains at least k− `+ 1 vertices from Ux, and consequently there is always a vertex form Ux

among any ` vertices of such an edge. In either case, this implies that |e′ ∩ Ux| ≥ k − ` + 1, thus

e′ ∈ H1. If an edge e′ intersects Ay then, by the same argument, we also have |e′ ∩Uy| ≥ k− `+1.

Finally, note that min(e′) = y. Indeed, since |Ux ∩ e| ≤ k− `, none of the ` rightmost vertices of e

is in Ux, and hence, we have e′ ∩ Ux = ∅. 2

Construction of Pq. Let Pq be a longest path with V (Pq) ⊂ Uq \ (e ∪ Q). Clearly, at most

k − `− 1 vertices of Uq will be left out, that is,

|Uq \ (V (Pq) ∪ e ∪Q))| ≤ k − `− 1 ≤ k. (33)

Trivially, Pq ⊂ H1.

Construction of Pj, j ∈ J . Set

W :=


 ⋃

i∈{1,...,q+1}\(J∪{x,y})
Ui


 \ (V (Pxy) ∪ V (Pq) ∪B ∪Q ∪ e) ,

and, for each j ∈ J , let Pj ⊆ Cj ⊆ H1 be a path with V (Pj) ⊆ Uj ∪W which uses precisely

αj := α− rj − (2k − 2`+ 2g + 2)

vertices of Uj \e and as many as possible vertices from W (we maintain that all paths Pj , j ∈ J , are

pairwise vertex-disjoint). Since i > j for every i ∈ [q+1]\(J ∪{x, y}), we do have min(V (Pj)) = j.

Also,

|Uj \ (V (Pj) ∪ e)| = 2(k − `+ g + 1) for each j ∈ J . (34)

Split arbitrarily the set Uj \ (V (Pj) ∪ e) into two sets Aq and A′
q of equal size |Aq| = |A′

q| =
k − `+ g + 1.

Next, we perform crucial calculations showing that we have, indeed, used all the vertices of

W , that is, there are no vertices outside the constructed paths except for those listed in (32,34)

and those put aside in B ∪Q.

Fact 22

W ⊆
⋃

j∈J

V (Pj)

Proof. We have, by the definition of Pxy, and by (31) and (33),

|W | = (q − 1− p)α− |R ∩ V (Pxy)|+ |Uq \ (V (Pq) ∪ e ∪Q)|+ |Uq+1 \ (B ∪ e)| ,
≤ (q − 1− p)α− (ν(αx)− αx)− (ν(αy)− αy) + 2k.
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Recall that each path Pj , j ∈ J , may have the maximum length ν(αj), and thus cover up to

ν(αj)− αj vertices of W . Therefore, to complete the proof it suffices to show that

(q − 1− p)α− (ν(αx)− αx)− (ν(αy)− αy) + 2k ≤
∑

j∈J

(ν(αj)− αj),

or, equivalently, ∑

j∈J∪{x,y}
(ν(αj)− αj) ≥ (q − 1− p)α+ 2k.

Note that for each j ∈ J ∪ {x, y}

rj + 2k − 2`+ 2g + 2 ≤ 5k. (35)

Hence, by the monotonicity of the function ν(·) and by Proposition 9, we have

ν(αj)− αj ≥ ν(α− 5k)− α ≥ ν − 5k2 − α,

and it remains to show that

p(ν − 5k2 − α) ≥ (q − 1− p)α+ 2k. (36)

To this end,

p(ν − 5k2)− pα ≥ (p− 1)ν + (α+ α/(k − 1)− k)− 5k2p− pα (by Corollary 10)

≥ (p− 1)ν + α+ p(k + 2g) + 2k − pα (by (24))

≥ (q − 1− p)α+ 2k ( by (23)).

(Since there is some margin in the above estimates, it means that not all the paths Pj , j ∈ J , are

of maximum length.) 2

Now comes the final stage of our construction, where we glue together the paths Pj1 , . . . , Pjp−2
,

Pq, and Pxy, in this order, to form a Hamiltonian cycle C. We do it as indicated in Fig. 4, with

the set Ax placed at the left end of Pxy, that is, next to the end of the path Px (see Fig. 4).

Clearly, every edge of
⋃p−2

i=1 Pji ∪ Pxy ∪ Pq belongs to H + e. As the last ingredient of our

proof of Theorem 3, we now show that every other edge of C belongs to H1 ∪H2 ⊆ H.

Fact 23

C \
(

p−2⋃

i=1

Pji ∪ Pxy ∪ Pq

)
⊆ H1 ∪H2

Proof. Let

A :=
{
Aji , A

′
ji : i = 1, . . . , p− 2

}
∪ {Aq, A

′
q, Ax, A

′
y}.

Note that each edge of C \
(⋃p−2

i=1 Pji ∪ Pxy ∪ Pq

)
intersects some set A ∈ A. recall that between

any two disjoint edges of C there are exactly g+ t(k− `) vertices on C, for some t ≥ 0. In that case

we say that the edge to the right (in some fixed ordering of C) t-follows the other edge. Let f1,

be the edge of C which 1-follows the rightmost edge of Pxy. Similarly, for i = 1, . . . , p− 2, let fi+1

be the edge of C which 1-follows the rightmost edge of Pji . Finally, let fp be the edge of C which
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Figure 2: Construction of C

1-follows the rightmost edge of Pq, see Fig. 4. Note that for each i = 1, . . . , p, we have Bi ⊂ fi,

and thus fi ∈ H2. Furthermore, these are the only edges of C which intersect more than one set

from A.

Consider now some f ∈ C, f 6= fi intersecting Aji . Obviously min(f) = ji. Also |f ∩Aji | ≥
k− `. However, if |f ∩Aji | = k− `, then |f ∩ V (Pji)| = `. Recall that each edge of Pji contains at

least k− `+1 vertices of Uji , and consequently there is always a vertex of Uji among any ` vertices

of such an edge. This implies that |f ∩Uji | ≥ k− `+1 and so, f ∈ H1. The same argument works

for any f ∈ C intersecting some set A ∈ A. 2

Thus, we have constructed an `-overlapping Hamiltonian cycle C in H + e, which completes

the proof of Lemma 20, which, in turn, together with Fact 19, implies Theorem 3.

5 The smallest open case: k = 4 and ` = 2

In this section we prove Theorem 4. Our ultimate goal is, given large even integer n, to construct

a maximally non-2-Hamiltonian 4-graph H. In doing so we refine the technique used in the proof

of Theorem 3.

Choose integers α = Θ
(
n2/5

)
, α ≡ 1 mod 3, β = O

(
n3/5

)
, p = Θ

(
n3/5

)
, and

q =
⌊
4(α−1)

3α (p− 1)
⌋
+ 1 (37)

such that

n = qα+ 3p+ β. (38)

To see that such a choice is feasible, one may set, for instance, α =
⌈
n2/5

⌉
+ ε where ε ∈ {0, 1, 2}

is such that α ≡ 1 mod 3. Next choose p =
⌈

3n
4α+8

⌉
+ 1. Then, using (37,38) we have

n− β >
4

3
(α− 1)(p− 1) ≥ n− 3n

α+ 2
and

n− β ≤ 4

3
(α− 1)(p− 1) + α+ 3p = (p− 2)

(
4

3
(α− 1) + 4

)
−
(
p− 7

3
(α− 1)− 9

)

≤ n−
(
p− 7

3
(α− 1)− 9

)
,

which shows that a choice of an appropriate β is possible.

Let V =
⋃q+1

i=1 Ui, where |Ui| = α, i = 1, . . . , q, while |Uq+1| = 3p + β, and all sets Ui,

i = 1, . . . , q+1, are pairwise disjoint. Furthermore, let G ∼= pK3 +βK1 be a graph with vertex set

V (G) = Uq+1 consisting of p vertex disjoint triangles and β isolated vertices.
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We define H1 in the same way as in the general case, while H2 is defined smaller:

H1 =

{
e ∈

(
V

4

)
: |e ∩ Umin(e)| ≥ 3

}
,

H2 =

{
e ∈

(
V

4

)
: |e ∩ Uq+1| = 2, |tr(e)| = 2 and G[e ∩ Uq+1] = K2

}
. (39)

The improvement of the upper bound on sat(n, 4, 2) is possible mainly because in this par-

ticular case one can compute (quiet easily) the value of ν(x). Below we give only a (sharp) upper

bound in some special case.

Proposition 24 Let x ≡ 0 mod 3. Then

ν(x) ≤ 4
x

3
.

Proof. Let P = (e1, . . . , er), P ⊆ H1 and |V (P ) ∩ Umin(P )| = x. Recall that each ei, i = 1, . . . , r,

contains at least 3 vertices from Umin(P ). Since the ei’s with odd indices are disjoint,

dr/2e ≤ x

3
.

If r is odd then

|V (P )| ≤ 4dr/2e ≤ 4
x

3

and the statement follows. Similarly, if r is even and r/2 ≤ x
3 − 1 then

|V (P )| ≤ 2r + 2 ≤ 4
x

3
− 2

and the statement follows again. Suppose, finally, that r/2 = x
3 , r even. Since er contains at least

3 vertices from Umin(P ), at least one of them is not in er−1, however there are no more available

vertices in Umin(P ), meaning that this case is vacuous. 2

Lemma 25 H ′ = H1 ∪H2 is not 2-Hamiltonian.

Proof. Suppose that C is a 2-overlapping Hamiltonian cycle in H ′. As before (cf. Corollary 17),

one can easily show that H1 cannot be 2-Hamiltonian. Let M be a maximal set of edges in C ∩H2

with the property that if e1, e2 ∈ M then (e1 ∩ e2)∩Uq+1 = ∅. In view of the above remark M 6= ∅.
Set

V2 =
⋃

e∈M

e ∩ Uq+1.

Clearly, t := |M | ≤ p and |V2| = 2t. We divide C into t vertex disjoint paths Pj , j = 1, . . . , t, by

cutting through the middle of every edge from M (we treat a set ot 2 consecutive isolated vertices

as a single trivial path). More precisely, we keep all vertices in and take the edge set C −M . We

number the obtained paths so that, for some 1 ≤ s ≤ t, we have min(Pj) ≤ q for all j = 1, . . . , s

and V (Pj) ⊆ Uq+1 for all j = s + 1, . . . , t. Note that, because M 6= ∅, at least one path must be

of the first kind, but possibly s = t. Let

V ′
2 = V2 ∩

s⋃

j=1

V (Pj).
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Since V (Pj) ⊆ Uq+1 for all j = s+ 1, . . . , t, we have

t∑

j=s+1

|V (Pj)| ≤ |Uq+1| − |V ′
2 |. (40)

Claim For every j = 1, . . . , s

|V (Pj) \ V ′
2 | ≤ 4

α− 1

3
.

Proof. If some Pj consists of only two vertices then the claim obviously holds. Thus, we may

assume that each Pj is non-trivial. For j ≤ s, consider the path Pj = (e1, . . . , er). Let em ∈ M

with |em ∩ e1| = 2. That is em precedes e1 on C. Similarly, let er+1 ∈ M with |er+1 ∩ er| = 2,

which means that er+1 follows er on C.

Note that the edges from H2 can occur in Pj only at the ends. Thus (e2, . . . , er−1) =: P ′
j ⊂

H1. If e1 ∈ H1 then |e1 ∩Umin(Pj)| ≥ 3, meaning that |em ∩Umin(Pj)| ≥ 1. Thus, by the definition

of H2, |em∩Umin(Pj)| = 2. If e1 ∈ H2 then, since e1 6∈ M , we have |e1∩V ′
2 | ∈ {1, 2}. If |e1∩V ′

2 | = 1

then |em ∩ Umin(Pj)| ≥ 1 because |em ∩ e1| = 2 and |tr(e1)| = 2. Thus, again, |em ∩ Umin(Pj)| = 2.

To sum up

if e1 ∈ H1 or |e1 ∩ V ′
2 | = 1 then |em ∩ Umin(Pj)| = 2. (41)

The same holds for er and er+1

if er ∈ H1 or |er ∩ V ′
2 | = 1 then |er+1 ∩ Umin(Pj)| = 2. (42)

Suppose first that the assumptions on both e1 and er from (41,42), respectively, holds. Thus,

|V (P ′
j)∩Umin(Pj)| ≤ α− 4. Since α− 4 ≡ 0 mod 3, by Proposition 24 and the monotonicity of the

function ν,

|V (Pj)| = |V (P ′
j)|+ 4 ≤ 4

α− 4

3
+ 4 = 4

α− 1

3

and the claim follows.

Suppose now that e1 ∈ H2 with |e1 ∩ V ′
2 | = 2, while er satisfies the assumptions from (42).

Let P ′′
j be defined by (e3, . . . , er−1). By the definition of H2, |e1 ∩ Umin(Pj)| = 2. This together

with (42) implies that |V (P ′′
j ) ∩ Umin(Pj)| ≤ α − 4. Hence, by Proposition 24 and the assumption

on e1,

|V (Pj) \ V ′
2 | = (|V (P ′′

j )|+ 6)− 2 ≤ 4
α− 4

3
+ 4 = 4

α− 1

3

and the claim follows again.

The case when e1 satisfies the assumption of (41) and |er ∩ V ′
2 | = 2, is analogous (with

P ′′
j = (e2, . . . , er−2)).

Finally, if |e1 ∩V ′
2 | = 2 and |er ∩V ′

2 | = 2 then let P ′′
j = (e3, . . . , er−2). Since e1, er ∈ H2 (and

e2, er−1 ∈ H1), we have |e1 ∩ Umin(Pj)| = 2 and |er ∩ Umin(Pj)| = 2. Therefore,

|V (Pj) \ V ′
2 | = (|V (P ′′

j )|+ 8)− 4 ≤ 4
α− 4

3
+ 4 = 4

α− 1

3

and the claim follows. 2

Returning to the proof of Lemma 25, notice that |V ′
2 | ≤ |V2| = 2t ≤ 2p. Thus

|Uq+1| = 3p > |V ′
2 |+ 4

α− 1

3
, (43)
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because p >> α. Recalling that q > 4(α−1)
3α (p − 1) and using the above claim as well as (40,43),

we finally argue that

n = |V (CH)| =
s∑

j=1

|V (Pj)|+
t∑

j=s+1

|V (Pj)|

≤ max{|V ′
2 |+ 4t

α− 1

3
, |V ′

2 |+ 4(t− 1)
α− 1

3
+ |Uq+1| − |V ′

2 |}, according to wheather s = t or s ≤ t− 1

= |V ′
2 |+ 4(t− 1)

α− 1

3
+ |Uq+1| − |V ′

2 | by (43)

≤ 4(p− 1)
α− 1

3
+ 3p < qα+ 3p ≤ n,

which is a contradiction. Hence, no 2-overlapping Hamiltonian cycle exists in H1 ∪H2. 2

Let

H3 =

{
e ∈

(
V

4

)
: |tr(e)| ≥ 2 and min2(e) ≥ q

}

be the same as in the proof of Theorem 3. Finally, let H ′′ = H1∪H2∪H3 and let H be a maximal

non-2-Hamiltonian hypergraph such that H ′ ⊆ H ⊆ H ′′. By Lemma 25, such a 4-graph exists.

Fact 26

|H| = O(n14/5)

Proof. By the definitions of H and H ′′,

|H| ≤ |H ′′| ≤ |H1|+ |H2|+ |H3|.

Furthermore,

|H1| = O
(
q · α3 · n+ p4

)
= O

(
n14/5

)
,

|H2| = O
(
3p · n · n2/5

)
= O

(
n2
)
and

|H3| = O
(
n · p3

)
= O

(
n14/5

)
.

2

To complete the proof of Theorem 4, it remains to show the following lemma.

Lemma 27 For every e ∈
(
V
4

)
\H the 4-graph H + e is 2-Hamiltonian.

Proof. Let e = {u1, u2, u3, u4}, where uj ∈ Uij , j = 1, 2, 3, 4, and i1 ≤ i2 ≤ i3 ≤ i4. As

e 6∈ H1, we have |tr(e)| ≥ 2. Let x and y stand for the two smallest different indices among

i1, i2, i3, i4. Note that by the definition of H, e 6∈ H3, and thus y ≤ q − 1.

Set I = [q−1]\{x, y}, note that p−2 is (much) smaller than q−3, and let J = {j1, . . . , jp−2}
be the set of the p − 2 smallest indices in I. We will construct p paths Pj1 , . . . , Pjp−2

, Pxy, and

Pq+1, such that for each j ∈ J , we have V (Pj) ⊇ Uj \ e,

Ux ∪ Uy ∪ e ⊆ V (Pxy) ⊂ Ux ∪ Uy ∪ e ∪ Uq,

and V (Pq+1) ⊂ Uq+1. Together, these paths will contain all vertices in V except some 2p vertices

of Uq+1. Using these exceptional vertices, the paths will be connected by p ‘bridges’ made of the

edges of H2, to form a 2-Hamiltonian cycle in H.
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For the ease of notation assume that x = q − 2 and y = q − 1. Then J = [p − 2]. To

display the structure of each path we will use a shorthand notation j for any element of Uj ,

j = 1, . . . , p − 2, x, y, q, q + 1. Finally, we designate by * each of the two unknown elements of

e = {u1, u2, u3, u4} (other than x and y); recall that u1 ∈ Ux, while {u2, u3, u4} ⊆ ⋃q+1
i=x Ui and

|{u2, u3, u4} ∩ Ux| ≤ 1.

Construction of Pxy. We consider five cases with respect to the multiplicities of the vertices of

Vx and Vy in e.

Case 1. In the case when u1 ∈ Ux, u2 ∈ Uy and none of u3, u4 belongs to Uy, the path Pxy is

constructed as follows:

xx|xx|xx|qx|xx|qx|xx| . . . |qx|xx |x ∗ | ∗ y|︸ ︷︷ ︸
e

yy|yq|yy|yq| . . . |yy|yq|yy|yy|yy

(the sequence begins with 3 blocks |xx| followed by (α−7)/3 pairs |qx|xx| and the edge e; the right

side is constructed similarly with y replacing x and the blocks being arranged in the opposite order),

where every element of Ux∪Uy appears exactly once, while 2
3 (α−7) ≤ |V (Pxy)∩Uq| ≤ 2

3 (α−7)+2

or equivalently 2
3 (α− 1)− 4 ≤ |V (Pxy)∩Uq| ≤ 2

3 (α− 1)− 2 (recall that 3|(α− 1)). Note that each

pair of consecutive blocks of size two forms an edge of H1 (except the middle pair x ∗ | ∗ y, which
is just the edge e) and |V (Pxy)| = 2

(
4α−7

3 + 8
)
= 8

3 (α− 1).

Case 2. If u1 ∈ Ux, u2 ∈ Uy and exactly one of u3, u4 belongs to Uy, the path Pxy is constructed

as follows:

xx|xx|xx|qx|xx| . . . |qx|xx |x ∗ |yy|︸ ︷︷ ︸
e

yq|yy|yq| . . . |yy|yq|yy|yy.

Again, |V (Pxy)| = 8
3 (α− 1), while 2

3 (α− 1)− 3 ≤ |V (Pxy) ∩ Uq| ≤ 2
3 (α− 1)− 2.

Case 3. If u1 ∈ Ux and u2, u3, u4 ∈ Uy then we form Pxy as follows:

xx|xx|xx|qx|xx| . . . |qx|xx |xy|yy|︸ ︷︷ ︸
e

yq|yy|yq| . . . |yy|yq|yy|yy|yy.

This time |V (Pxy)| = 8
3 (α− 1)− 2 and |V (Pxy) ∩ Uq| = 2

3 (α− 1)− 4.

Case 4. If u1, u2 ∈ Ux, u3 ∈ Uy and u4 6∈ Uy, the path Pxy is constructed as follows:

xx|xx|qx|xx| . . . |qx|xx|qx |xx| ∗ y|︸ ︷︷ ︸
e

yy|yq|yy| . . . |yq|yy|yy|yy.

Now |V (Pxy)| = 8
3 (α− 1) and 2

3 (α− 1)− 3 ≤ |V (Pxy) ∩ Uq| ≤ 2
3 (α− 1)− 2.

Case 5. If u1, u2 ∈ Ux and u3, u4 ∈ Uy, we form the path Pxy as follows:

xx|xx|qx|xx| . . . |qx|xx|qx |xx|yy|︸ ︷︷ ︸
e

yq|yy|yq| . . . |yy|yq|yy|yy.

We have again |V (Pxy)| = 8
3 (α− 1), while |V (Pxy) ∩ Uq| = 2

3 (α− 1)− 2.

Let us now set aside p 2-element disjoint subsets B1, . . . , Bp of Uq+1 which correspond to

disjoint edges of the graph G, one from each triangle of G. Set B =
⋃p

i=1 Bi. These pairs will be

used to glue together all p paths into a Hamiltonian 2-cycle.

To describe the remaining paths, let symbol w represent any element of the set

W :=

q−3⋃

i=p−1

Ui ∪ Uq ∪ (Uq+1 \B) \ V (Pxy).
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Construction of Pj, j = 1, . . . , p − 2. For j = 1, . . . , p − 2, we build path Pj by splitting α − 4

vertices of Uj into (α− 4)/3 blocks of length 3, separating them by arbitrary vertices from W and

putting the remaining 4 vertices of Uj at the end. In a diagram form

Pj = jj|jw|jj|jw| . . . |jj|jw|jj|jj.

Because j < min{i : Ui ∩W 6= ∅}, each pair of consecutive blocks of size two forms an edge of H1.

Also, |V (Pj)| = 4
3 (α− 1), which means that Pj can accommodate precisely (α− 4)/3 vertices from

W . As, by our choice of q,

(p− 2)
α− 4

3
≥ (q − p− 1)(α− 1) +

α− 1

3
+ 3, (44)

we have
p−2⋃

r=1

V (Pj) ⊇
q−3⋃

i=p−1

Ui ∪ (Uq \ V (Pxy)) .

On the other hand, the difference between the L-H-S and R-H-S of (44) is less than 4α
3 << p, so

that the surplus w-spots can be filled with some elements of Uq+1.

Construction of Pq+1. The last path, Pq+1, consists of all the remaining vertices of Uq+1 whose

number is even, because n is even and every so far built path, as well as the set B, consists of an

even number of vertices.

The constructed paths P1, . . . , Pp−2, Pxy, and Pq+1 are now connected together, in arbitrary

order, by the 2-element blocks B1, . . . , Bp. Note that each Bj makes edges of H2 with arbitrary

2-element sets from some Ui, i = 1, . . . , q. This completes the construction of a 2-Hamiltonian

cycle in H + e. 2

The proof of Theorem 4 follows immediately from Lemma 27 and Fact 26.

References

[1] L. Clark and R. Entringer, Smallest maximally non-Hamiltonian graphs, Period. Math. Hun-

gar. 14(1), 1983, 57-68.

[2] R. Glebov, Y. Person and W. Weps, On extremal hypergraphs for Hamiltonian cycles. Euro-

pean J. Combin., 33:544–555, 2012.

[3] G. Y. Katona, Hamiltonian chains in hypergraphs, A survey. Graphs, Combinatorics, Algo-

rithms and its Applications, (ed. S. Arumugam, B. D. Acharya, S. B. Rao), Narosa Publishing

House 2004.

[4] G. Y. Katona and H. Kierstead, Hamiltonian chains in hypergraphs. J. Graph Theory,

30:205–212, 1999.
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