

Auravägen 17, SE-182 60 Djursholm, Sweden Tel. +46 8 622 05 60 Fax. +46 8 622 05 89 info@mittag-leffler.se www.mittag-leffler.se

## Some variants of Frobenius splitting

m. KANEDA

REPORT No. 21, 2014/2015, spring  ${\rm ISSN~1103\text{-}467X}$   ${\rm ISRN~IML\text{-}R\text{-}~-21\text{-}14/15\text{-}~-SE\text{+}spring}$ 

# Some variants of Frobenius splitting

Kaneda Masaharu Osaka City University Department of Mathematics kaneda@sci.osaka-cu.ac.jp

May 14, 2015

#### Abstract

Let G be a reductive algebraic group over an algebraically closed field  $\mathbbm{k}$  of positive characteristic  $p, F: G \to G^{(1)}$  the Frobenius morphism on  $G, G_r = \ker F^r, r$  a positive integer, and P a parabolic subgroup of G. If  $\lambda$  is a 1-dimensional P-module,  $G_rP$ -Verma module  $\hat{\nabla}_P(\lambda) = \operatorname{ind}_P^{G_rP}(\lambda)$  of highest weight  $\lambda$  has a unique simple submodule  $\hat{L}(\lambda)$ . We show that the imbedding  $i_P: \hat{L}(\lambda) \hookrightarrow \hat{\nabla}_P(\lambda)$  splits upon sheafification  $\mathcal{L}_{G/G_rP}(i_P): \mathcal{L}_{G/G_rP}(\hat{L}(\lambda)) \to \mathcal{L}_{G/G_rP}(\hat{\nabla}_P(\lambda))$  on  $G/G_rP$ .

Let G be a reductive algebraic group over an algebraically closed field  $\mathbbm{k}$  of positive characteristic p, B a Borel subgroup of G, and T a maximal torus of B. For simplicity we will assume that G is semi simple and simply connected. Let  $\Lambda$  be the character group of T, R the set of roots of G relative to T,  $R^+$  the positive system of R such that the roots of B are  $-R^+$ , and  $R^s$  the set of simple roots of  $R^+$ . We make  $\Lambda$  into a PO set with respect to  $R^+$  such that  $\lambda \geq \mu, \ \lambda, \mu \in \Lambda$ , iff  $\lambda - \mu \in \sum_{\alpha \in R^+} \mathbb{N}\alpha$ . Let  $I \subseteq R^s$  and P the parabolic subgroup of G containing B associated to I. Put  $\Lambda_P = \{\lambda \in \Lambda \mid \langle \lambda, \alpha^\vee \rangle = 0\}$ , where  $\alpha^\vee$  denotes the coroot of  $\alpha$ . Put  $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha \in \Lambda$  and  $\rho_P = \frac{1}{2} \sum_{\alpha \in R^+ \setminus R_I^+} \alpha \in \Lambda_P$  with  $R_I^+ = R^+ \cap \mathbb{Z}I$  the set of positive roots of the standard Levi subgroup of P.

Let  $F^r: G \to G^{(r)}$  be the r-th Frobenius morphism on G, r a positive integer,  $G_r = \ker F^r$  the r-th Frobenius kernel of G. Let  $\hat{\nabla}_P = \operatorname{ind}_P^{G_r P}$  be the induction functor from the category of P-modules to the category of  $G_r P$ -modules. For each  $\lambda \in \Lambda_P$  we call  $\hat{\nabla}_P(\lambda)$ , induced from the 1-dimensional P-module afforded by  $\lambda$ , the  $G_r P$ -Verma module of highest weight  $\lambda$ . It has a unique simple submodule  $\hat{L}(\lambda)$ . We show that the imbedding  $i_P:\hat{L}(\lambda) \hookrightarrow \hat{\nabla}_P(\lambda)$  splits upon sheafification  $\mathcal{L}_{G/G_r P}(i_P): \mathcal{L}_{G/G_r P}(i_P)(\hat{L}(\lambda)) \to \mathcal{L}_{G/G_r P}(i_P)(\hat{\nabla}_P(\lambda))$  on  $G/G_r P$ . If  $q_P:G/P \to G/G_r P$  is the natural morphism, one has a commutative diagram

<sup>2010</sup> Mathematics Subject Classification. 20G05.

<sup>\*</sup>supported in part by JSPS Grants in Aid for Scientific Research 15K04789 and by the Institut Mittag-Leffler (Djursholm, Sweden)

In the case  $\lambda = 0$  is the trivial P-module, under the identification via  $\phi$ ,  $\mathcal{L}_{G/G_rP}(i_P)$  coincides with the comorphism  $(F^r)^{\sharp}: \mathcal{O}_{(G/P)^{(r)}} \to (F^r)_* \mathcal{O}_{G/P}$  of the Frobenius morphism on G/P, the splitting of which has had many applications [MR], [BK].

Dually, the k-linear dual  $\hat{\nabla}_P(\lambda)^*$  of  $\hat{\nabla}_P(\lambda)$  has a unique simple quotient  $\hat{L}(2(p^r-1)\rho_P - \lambda)^*$  and the sheafification of the quotient  $\hat{\nabla}_P(\lambda)^* \to \hat{L}(2(p^r-1)\rho_P - \lambda)^*$  splits. In the case  $\lambda = 0$  the splitting gives a Frobenius cosplitting considered in [GK] and [K]. In particular, we remove the characteristic restriction assumed in the latter.

The author is grateful to the referee of [GK] who reminded him of a use of [AK].

### 1° The case of a Borel subgroup

For subgroup schemes  $H \leq K$  of G we denote by  $\operatorname{ind}_H^K$  the induction functor from the category of H-modules to the category of K-modules as in [J, I.3], and by  $\mathcal{L}_{K/H}$  its sheafification, the functor from the category of H-modules to the category of quasi-coherent sheaves on K/H as in [J, I.5]. For a K-module M we call the sum of simple submodules (resp. the intersection of all maximal submodules) of M the socle (resp. radical) of M and denote it by  $\operatorname{soc} M$  (resp.  $\operatorname{rad} M$ ). We set  $\operatorname{hd} M = M/\operatorname{rad} M$  and call it the head of M.

Fix a positive integer r. We will first deal with the case P=B. For short put  $\hat{\nabla}=\operatorname{ind}_B^{G_rB}$ ,  $\mathcal{B}=G/B$ ,  $\mathcal{B}_r=G/G_rB$ , and  $q:\mathcal{B}\to\mathcal{B}_r$  the natural morphism.

(1.1) Set  $\Lambda_r = \{\lambda \in \Lambda \mid \langle \lambda, \alpha^{\vee} \rangle \in [0, p^r[ \forall \alpha \in R^s \}. \text{ For } \lambda \in \Lambda \text{ we let } \hat{L}(\lambda) \text{ denote the simple } G_r B\text{-module of highest weight } \lambda. \text{ If we write } \lambda = \lambda^0 + p^r \lambda^1 \text{ with } \lambda \in \Lambda_r \text{ and } \lambda^1 \in \Lambda, \text{ one has an isomorphism } \hat{L}(\lambda) \simeq L(\lambda^0) \otimes p^r \lambda^1 \text{ with } L(\lambda^0) \text{ the simple } G\text{-module of highest weight } \lambda^0, \text{ and an isomorphism } \hat{\nabla}(\lambda) \simeq \hat{\nabla}(\lambda^0) \otimes p^r \lambda^1 \text{ with } \hat{\nabla}(\lambda^0) \text{ having a unique simple submodule } L(\lambda^0) \text{ [J, II.9.2, 6]. Let } i : \hat{L}(\lambda) \to \hat{\nabla}(\lambda) \text{ and } i_0 : L(\lambda^0) \to \hat{\nabla}(\lambda^0) \text{ denote the inclusions.}$ 

By the commutative diagram

$$\mathcal{L}_{\mathcal{B}_{r}}(\hat{L}(\lambda)) \xrightarrow{\mathcal{L}_{\mathcal{B}_{r}}(i)} \mathcal{L}_{\mathcal{B}_{r}}(\hat{\nabla}_{r}(\lambda))$$

$$\sim \downarrow \qquad \qquad \downarrow \sim \downarrow$$

$$\mathcal{L}_{\mathcal{B}_{r}}(L(\lambda^{0})) \otimes_{\mathcal{B}_{r}} \mathcal{L}_{\mathcal{B}_{r}}(p^{r}\lambda^{1}) \xrightarrow{\mathcal{L}_{\mathcal{B}_{r}}(i_{0}) \otimes_{\mathcal{B}_{r}} \mathcal{L}_{\mathcal{B}_{r}}(p^{r}\lambda^{1})} \xrightarrow{\mathcal{L}_{\mathcal{B}_{r}}(\hat{\nabla}_{r}(\lambda^{0})) \otimes_{\mathcal{B}_{r}} \mathcal{L}_{\mathcal{B}_{r}}(p^{r}\lambda^{1}),$$

in order to show that  $\mathcal{L}_{\mathcal{B}_r}(i)$  splits, we may assume  $\lambda \in \Lambda_r$ .

(1.2) Keep the notations of (1.1), and assume  $\lambda \in \Lambda_r$ . A splitting of  $\mathcal{L}_{\mathcal{B}_r}(i)$  exists iff

$$\mathbf{Mod}_{\mathcal{B}_r}(\mathcal{L}_{\mathcal{B}_r}(i), \mathcal{L}_{\mathcal{B}_r}(L(\lambda))) : \mathbf{Mod}_{\mathcal{B}_r}(\mathcal{L}_{\mathcal{B}_r}(\hat{\nabla}(\lambda)), \mathcal{L}_{\mathcal{B}_r}(L(\lambda))) \rightarrow \\ \mathbf{Mod}_{\mathcal{B}_r}(\mathcal{L}_{\mathcal{B}_r}(L(\lambda)), \mathcal{L}_{\mathcal{B}_r}(L(\lambda)))$$

is surjective. Then, by the commutative diagram

$$\Gamma(\mathcal{B}_{r}, \mathcal{L}_{\mathcal{B}_{r}}(\hat{\nabla}(\lambda)^{*} \otimes L(\lambda))) \xrightarrow{\Gamma(\mathcal{B}_{r}, \mathcal{L}_{\mathcal{B}_{r}}(\hat{\nabla}(i^{*} \otimes L(\lambda)))} \rightarrow \Gamma(\mathcal{B}_{r}, \mathcal{L}_{\mathcal{B}_{r}}(L(\lambda)^{*} \otimes L(\lambda)))$$

$$\sim \downarrow \qquad \qquad \downarrow \sim \downarrow$$

$$\operatorname{ind}_{G_{r}B}^{G}(\hat{\nabla}(\lambda)^{*} \otimes L(\lambda)) \xrightarrow{\operatorname{ind}_{G_{r}B}^{G}(i^{*} \otimes L(\lambda))} \rightarrow \operatorname{ind}_{G_{r}B}^{G}(L(\lambda)^{*} \otimes L(\lambda))$$

$$\downarrow \sim \downarrow \qquad \qquad \downarrow \sim \downarrow$$

$$\operatorname{ind}_{G_{r}B}^{G}(\hat{\nabla}(\lambda)^{*}) \otimes L(\lambda) \xrightarrow{\operatorname{ind}_{G_{r}B}^{G}(i^{*} \otimes L(\lambda))} \rightarrow \operatorname{ind}_{G_{r}B}^{G}(L(\lambda)^{*}) \otimes L(\lambda),$$

we have only to show that  $\operatorname{ind}_{G_rB}^G(i^*): \operatorname{ind}_{G_rB}^G(\hat{\nabla}(\lambda)^*) \to \operatorname{ind}_{G_rB}^G(L(\lambda)^*)$  is surjective. As  $\hat{\nabla}(\lambda)^* \simeq \hat{\nabla}(2(p^r-1)\rho-\lambda)$  by [J, II.9.2] and as  $L(\lambda)^* \simeq L(-w_0\lambda)$  is the head of  $\hat{\nabla}(2(p^r-1)\rho-\lambda)$  with  $w_0$  denoting the element of the Weyl group W of G such that  $w_0R^+ = -R^+$ , if we denote by j the quotient  $\hat{\nabla}(2(p^r-1)\rho-\lambda) \to L(-w_0\lambda)$ , we are to show that  $\operatorname{ind}_{G_rB}^G(j): \operatorname{ind}_{G_rB}^G(\hat{\nabla}(2(p^r-1)\rho-\lambda)) \to \operatorname{ind}_{G_rB}^G(L(-w_0\lambda))$  is surjective. If  $\nabla = \operatorname{ind}_B^G$ ,  $\operatorname{ind}_{G_rB}^G(\hat{\nabla}(2(p^r-1)\rho-\lambda)) \simeq \nabla(2(p^r-1)\rho-\lambda)$ . Letting ev denote the evaluations [J, I.3], one has also an isomorphism ev:  $\operatorname{ind}_{G_rB}^G(L(-w_0\lambda)) \to L(-w_0\lambda)$  by the tensor identity [J, I.3.6]. We have thus a commutative diagram

$$\nabla(2(p^{r}-1)\rho - \lambda) \xrightarrow{\sim} \operatorname{ind}_{G_{r}B}^{G}(\hat{\nabla}(2(p^{r}-1)\rho - \lambda)) \xrightarrow{\operatorname{ind}_{G_{r}B}^{G}(j)} \operatorname{ind}_{G_{r}B}^{G}(L(-w_{0}\lambda))$$

$$\overset{\text{ev}}{\sim} \bigvee_{\text{ev}} \bigvee_{j} \underbrace{\nabla(2(p^{r}-1)\rho - \lambda) \xrightarrow{j}} L(-w_{0}\lambda).$$

It follows that  $\mathcal{L}_{\mathcal{B}_r}(i)$  splits iff the evaluation morphism  $\mathrm{ev}': \nabla(2(p^r-1)\rho-\lambda) \to \hat{\nabla}(2(p^r-1)\rho-\lambda)$  is surjective. As  $\{2(p^r-1)\rho-\lambda\}-(p^r-1)\rho$  is dominant, however, the surjectivity has been shown in [AK, 8.2]. We have thus proved

(1.3) **Theorem:** If  $\lambda = \lambda^0 + p^r \lambda^1$  with  $\lambda^0 \in \Lambda_r$  and  $\lambda^1 \in \Lambda$ , the imbedding  $\mathcal{L}_{\mathcal{B}_r}(\hat{L}(\lambda)) \to \mathcal{L}_{\mathcal{B}_r}(\hat{\nabla}_r(\lambda))$  splits to yield  $L(\lambda^0) \otimes \mathcal{L}_{\mathcal{B}_r}(p^r \lambda^1)$  as a direct summand of  $\mathcal{L}_{\mathcal{B}_r}(\hat{\nabla}_r(\lambda))$ .

(1.4) Let  $\lambda \in \Lambda$ . Dualizing  $i : \hat{L}(\lambda) \hookrightarrow \hat{\nabla}(\lambda)$ ,  $i^* : \hat{\nabla}(\lambda)^* \twoheadrightarrow \hat{L}(\lambda)^*$  reads by (1.2) as the quotient  $j : \hat{\nabla}(2(p^r - 1)\rho - \lambda) \to L(-w_0\lambda^0) \otimes (-p^r\lambda^1)$  to the head of  $\hat{\nabla}(2(p^r - 1)\rho - \lambda)$ . As  $\mathcal{L}_{\mathcal{B}_r}(i)$  splits, so does  $\mathcal{L}_{\mathcal{B}_r}(i)^{\vee} = \mathcal{L}_{\mathcal{B}_r}(i^*) = \mathcal{L}_{\mathcal{B}_r}(j)$ . We have shown

**Theorem:** For each  $\lambda \in \Lambda$  the sheafification  $\mathcal{L}_{\mathcal{B}_r}(j) : \mathcal{L}_{\mathcal{B}_r}(\hat{\nabla}(\lambda)) \to \mathcal{L}_{\mathcal{B}_r}(\mathrm{hd}_{G_rB}\hat{\nabla}(\lambda))$  on  $\mathcal{B}_r$  of the quotient  $j : \hat{\nabla}(\lambda) \to \mathrm{hd}_{G_rB}\hat{\nabla}(\lambda)$  splits.

(1.5) Recall from [J, II.11.8] that  $\hat{\nabla}(\lambda)$  is simple iff  $\lambda \in (p^r - 1)\rho + p^r\Lambda$ .

Corollary: For any  $\lambda \in \Lambda \setminus \{(p^r-1)\rho + p^r\Lambda\}$ ,  $\mathcal{L}_{\mathcal{B}_r}(\hat{\nabla}(\lambda))$  has  $\mathcal{L}_{\mathcal{B}_r}(\operatorname{soc}\hat{\nabla}(\lambda)) \oplus \mathcal{L}_{\mathcal{B}_r}(\operatorname{hd}\hat{\nabla}(\lambda))$  as a direct summand. In particular,  $\mathcal{O}_{\mathcal{B}^{(r)}} \oplus \{\mathcal{L}_{\mathcal{B}}(-\rho)^{(r)} \otimes L((p^r-2)\rho)\}$  is a direct summand of  $F_*^r\mathcal{O}_{\mathcal{B}}$ .

**Proof:** We may assume  $\lambda \in \Lambda_r$ . By (1.4) we have a decomposition  $\mathcal{L}_{\mathcal{B}_r}(\hat{\nabla}(\lambda)) = \mathcal{L}_{\mathcal{B}_r}(\operatorname{rad}\hat{\nabla}(\lambda)) \oplus \mathcal{L}_{\mathcal{B}_r}(\operatorname{hd}\hat{\nabla}(\lambda))$ . Let  $\theta : \operatorname{soc}\hat{\nabla}(\lambda) \hookrightarrow \operatorname{rad}\hat{\nabla}(\lambda)$  and  $\eta : \operatorname{rad}\hat{\nabla}(\lambda) \hookrightarrow \hat{\nabla}(\lambda)$ . As in (1.2),  $\mathcal{L}_{\mathcal{B}_r}(\theta)$  splits iff  $\operatorname{ind}_{G_rB}^G(\theta^*) : \operatorname{ind}_{G_rB}^G((\operatorname{rad}\hat{\nabla}(\lambda))^*) \to \operatorname{ind}_{G_rB}^G((\operatorname{soc}\hat{\nabla}(\lambda))^*)$  is surjective. The latter follows from the commutative diagram

$$\operatorname{ind}_{G_{r}B}^{G}(\hat{\nabla}(\lambda)^{*}) \xrightarrow{\operatorname{ind}_{G_{r}B}^{G}(\eta^{*})} \operatorname{ind}_{G_{r}B}^{G}((\operatorname{rad}\hat{\nabla}(\lambda))^{*}) \xrightarrow{\operatorname{ind}_{G_{r}B}^{G}(\theta^{*})} \operatorname{ind}_{G_{r}B}^{G}((\operatorname{soc}\hat{\nabla}(\lambda))^{*})$$

$$\stackrel{\operatorname{ev}}{\downarrow} \qquad \qquad \underset{n^{*}}{\overset{\operatorname{ev}}{\downarrow}} \qquad \qquad \underset{\theta^{*}}{\overset{\operatorname{ev}}{\downarrow}} \qquad \qquad \underset{\theta^{*}}{\overset{\operatorname{coc}\hat{\nabla}(\lambda)}{\overset{\operatorname{od}}{\downarrow}}} \operatorname{coc}\hat{\nabla}(\lambda))^{*}.$$

#### 2° The general case

We now consider the case  $P = P_I$ ,  $I \subseteq R^s$ . For short put  $\hat{\nabla}_P = \operatorname{ind}_P^{G_r P}$ ,  $\mathcal{P} = G/P$ ,  $\mathcal{P}_r = G/G_r P$ , and let  $q_P : \mathcal{P} \to \mathcal{P}_r$ ,  $\bar{\pi} : \mathcal{B} \to \mathcal{P}$ ,  $\bar{\pi}_r : \mathcal{B}_r \to \mathcal{P}_r$  denote the natural morphisms. We have thus  $q_P \circ \bar{\pi} = \bar{\pi}_r \circ q$ .

(2.1) Let  $\Lambda_P = \{\lambda \in \Lambda | \langle \lambda, \alpha^{\vee} \rangle = 0 \ \forall \alpha \in I \}$  and put  $\rho_P = \frac{1}{2} \sum_{\alpha \in R^+ \setminus R_I^+} \alpha \in \Lambda_P$  with  $R_I^+ = R^+ \cap \mathbb{Z}I$ . Let  $\lambda = \lambda^0 + p^r \lambda^1 \in \Lambda_P$  with  $\lambda^0 \in \Lambda_r$  and  $\lambda^1 \in \Lambda$ .

Recall from [AbK, 1.4] that  $\hat{\nabla}_P(\lambda)$  has a unique simple submodule  $L(\lambda^0) \otimes p^r \lambda^1$ , which we will denote by  $\hat{L}(\lambda)$  again. Let  $i_P : \hat{L}(\lambda) \to \hat{\nabla}(\lambda)$  be the inclusion. Recall also from [J, I.5.18] the functorial isomorphism  $\bar{\pi}_{r*} \circ \mathcal{L}_{\mathcal{B}_r} \simeq \mathcal{L}_{\mathcal{P}_r} \circ \operatorname{ind}_{G_rB}^{G_rP}$ . By the tensor identity one has isomorphisms  $\bar{\pi}_{r*}\mathcal{L}_{\mathcal{B}_r}(\hat{\nabla}(\lambda)) \simeq \mathcal{L}_{\mathcal{P}_r}(\hat{\nabla}_P(\lambda))$  and  $\bar{\pi}_{r*}\mathcal{L}_{\mathcal{B}_r}(L(\lambda)) \simeq \mathcal{L}_{\mathcal{P}_r}(L(\lambda))$ , and hence, using the inclusion  $i : L(\lambda) \to \hat{\nabla}(\lambda)$  from §1, obtains a commutative diagram

$$\mathcal{L}_{\mathcal{P}_{r}}(L(\lambda)) \xrightarrow{\mathcal{L}_{\mathcal{P}_{r}}(i_{P})} \mathcal{L}_{\mathcal{P}_{r}}(\hat{\nabla}_{P}(\lambda))$$

$$\uparrow \\ \bar{\pi}_{r*}\mathcal{L}_{\mathcal{B}_{r}}(L(\lambda)) \xrightarrow{\bar{\pi}_{r*}\mathcal{L}_{\mathcal{B}_{r}}(i)} \bar{\pi}_{r*}\mathcal{L}_{\mathcal{B}_{r}}(\hat{\nabla}(\lambda)).$$

As  $\mathcal{L}_{\mathcal{B}_r}(i)$  splits by (1.3), so does  $\bar{\pi}_{r*}\mathcal{L}_{\mathcal{B}_r}(i)$ , and hence also  $\mathcal{L}_{\mathcal{P}_r}(i_P)$ . We have proved

**Theorem:** For any  $\lambda \in \Lambda_P$  the inclusion  $i_P : \hat{L}(\lambda) \to \hat{\nabla}_P(\lambda)$  splits upon sheafification on  $\mathcal{P}_r$  to yield a direct summand  $L(\lambda^0) \otimes \mathcal{L}_{\mathcal{P}_r}(p^r\lambda^1)$  of  $\mathcal{L}_{\mathcal{P}_r}(\hat{\nabla}_P(\lambda))$ .

- (2.2) Corollary: For any  $\lambda \in \Lambda_r \cap \lambda_P$  one has  $\mathcal{O}_{\mathcal{P}^{(r)}}$  as a direct summand of  $(F^r)_*\mathcal{L}_{\mathcal{P}}(\lambda)$ .
- (2.3) Let  $\lambda \in \Lambda_P$ . Recall from [AbK, 1.2] an isomorphism of  $G_rP$ -modules  $\nabla_P(\lambda)^* \simeq \hat{\nabla}_P(2(p^r-1)\rho_P \lambda)$ . Thus, putting  $\mu = 2(p^r-1)\rho_P \lambda$ , the  $\mathbb{k}$ -linear dual of  $i_P$  reads as the quotient  $j_P : \hat{\nabla}_P(\mu) \to \mathrm{hd}_{G_rP}\hat{\nabla}_P(\mu)$  to the head of  $\hat{\nabla}_P(\mu)$ . We have

**Theorem:** For any  $\lambda \in \Lambda_P$  the quotient  $j_P : \hat{\nabla}_P(\lambda) \to \mathrm{hd}_{G_rP} \hat{\nabla}_P(\lambda)$  splits upon sheafification on  $\mathcal{P}_r$ .

(2.4) Note that the existence of a splitting of  $\mathcal{L}_{\mathcal{P}_r}(i_P)$  in (2.1) is equivalent, as in (1.2), to the surjectivity of the evaluation morphism  $\nabla(2(p^r-1)\rho_P-\lambda)=\operatorname{ind}_P^G(2(p^r-1)\rho_P-\lambda)\to \hat{\nabla}_P(2(p^r-1)\rho_P-\lambda), \ \lambda\in\Lambda_r\cap\Lambda_P$ . Thus

Corollary: Let  $\lambda \in \Lambda_P$ .

- (i) If  $\lambda \in \Lambda_r$ , any nonzero  $G_rP$ -linear morphism  $\nabla(2(p^r-1)\rho_P \lambda) \to \hat{\nabla}_P(2(p^r-1)\rho_P \lambda)$  is surjective.
- (ii) If  $\hat{\nabla}_P(\lambda)$  is not simple,  $\mathcal{L}_{\mathcal{P}_r}(\operatorname{soc}\hat{\nabla}_P(\lambda)) \oplus \mathcal{L}_{\mathcal{P}_r}(\operatorname{hd}\hat{\nabla}_P(\lambda))$  is a direct summand of  $\mathcal{L}_{\mathcal{P}_r}(\hat{\nabla}_P(\lambda))$ .
- (2.5) **Remark:** If  $\lambda \in \Lambda_r \cap \Lambda_P$ , any nonzero  $G_rP$ -linear morphism  $\nabla(\lambda) \to \hat{\nabla}_P(\lambda)$  is injective, as  $\nabla(\lambda)$  has a unique simple  $G_r$ -submodule  $L(\lambda)$ .
- (2.6) Let  $\lambda \in \Lambda_P$ . Recall from [AbK, 1.4] that  $\operatorname{soc}\hat{\nabla}_P(\lambda) = L(\lambda^0) \otimes p^r \lambda^1$  and that  $\operatorname{hd}\hat{\nabla}_P(\lambda) = L((w^I \bullet \lambda)^0) \otimes p^r \{(w^I)^{-1} \bullet (w^I \bullet \lambda)^1\}$ , where  $w^I = w_0 w_I$  with  $w_I \in \langle s_\alpha | \alpha \in I \rangle$  such that  $w_I I = -I$ . Put  $\operatorname{soc}^1\hat{\nabla}_P(\lambda) = \lambda^1$  and  $\operatorname{hd}^1\hat{\nabla}_P(\lambda) = (w^I)^{-1} \bullet (w^I \bullet \lambda)^1$ . Recall from [AbK, 1.1] that  $2\rho_P = \sum_{\alpha \in R^s \setminus I} n_\alpha \varpi_\alpha$  for some  $n_\alpha \in [2, h]$ , h the Coxeter number of W. If  $\lambda^0 = \sum_{\alpha \in R^s \setminus I} \lambda_\alpha \varpi_\alpha$ ,  $\lambda_\alpha \in [0, p^r[$ , define  $r_\alpha \in \mathbb{N}$ ,  $\alpha \in R^s \setminus I$ , such that  $r_\alpha p^r (n_\alpha + \lambda_\alpha) \in [0, p^r[$ . Then

$$(1) (w^I \bullet \lambda^0)^1 = -\sum_{\alpha \in R^s \setminus I} r_\alpha \overline{\omega}_{-w_0 \alpha}$$

and

(2) 
$$\operatorname{hd}^{1}\hat{\nabla}_{P}(\lambda) = (w^{I})^{-1} \bullet (w^{I} \bullet \lambda^{0})^{1} + \lambda^{1} = \lambda^{1} + \sum_{\alpha \in R^{s} \setminus I} (r_{\alpha} - n_{\alpha}) \varpi_{\alpha}.$$

Note, in particular, that  $\operatorname{hd}^1\hat{\nabla}_P(\lambda)$  depends not only on  $\lambda$  but also on p.

**Proposition:** Assume  $I \neq R^s$  and that  $p \geq h-1$ . Write  $\lambda^0 = \sum_{\alpha \in R^s \setminus I} \lambda_\alpha \varpi_\alpha$ ,  $\lambda_\alpha \in [0, p^r[$   $\forall \alpha \in R^s \setminus I$ , and define  $r_\alpha \in \mathbb{N}$  as above. If all  $r_\alpha = 1$ ,  $\alpha \in R^s \setminus I$ , then  $\forall i \in \mathbb{N}$ ,  $\operatorname{Ext}^i_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}(\operatorname{soc}^1\hat{\nabla}_P(\lambda)), \mathcal{L}_{\mathcal{P}}(\operatorname{hd}^1\hat{\nabla}_P(\lambda))) = 0$  while  $\operatorname{Ext}^i_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}(\operatorname{hd}^1\hat{\nabla}_P(\lambda)), \mathcal{L}_{\mathcal{P}}(\operatorname{soc}^1\hat{\nabla}_P(\lambda))) \simeq \delta_{i0}\nabla(2\rho_P - \sum_{\alpha \in R^s \setminus I} \varpi_\alpha)$ .

**Proof:** We may assume  $\lambda \in \Lambda_r$ . Put  $J = \mathbb{R}^s \setminus I$ .  $\forall i \in \mathbb{N}$ ,

 $\operatorname{Ext}_{\mathcal{P}^{(r)}}^{i}(\mathcal{L}_{\mathcal{P}}(\operatorname{soc}^{1}\hat{\nabla}_{P}(\lambda))^{(r)}, \mathcal{L}_{\mathcal{P}}(\operatorname{hd}^{1}\hat{\nabla}_{P}(\lambda))^{(r)}) \simeq \operatorname{Ext}_{\mathcal{P}}^{i}(\mathcal{L}_{\mathcal{P}}(\operatorname{soc}^{1}\hat{\nabla}_{P}(\lambda)), \mathcal{L}_{\mathcal{P}}(\operatorname{hd}^{1}\hat{\nabla}_{P}(\lambda)))^{(r)}$  with

$$\operatorname{Ext}_{\mathcal{P}}^{i}(\mathcal{L}_{\mathcal{P}}(\operatorname{soc}^{1}\hat{\nabla}_{P}(\lambda)), \mathcal{L}_{\mathcal{P}}(\operatorname{hd}^{1}\hat{\nabla}_{P}(\lambda))) = \operatorname{Ext}_{\mathcal{P}}^{i}(\mathcal{O}_{\mathcal{P}}, \mathcal{L}_{\mathcal{P}}((w^{I})^{-1} \bullet (-\sum_{\alpha \in J} \varpi_{-w_{0}\alpha})))$$

$$\simeq \operatorname{H}^{i}(\mathcal{P}, \mathcal{L}_{\mathcal{P}}((w^{I})^{-1} \bullet (-\sum_{\alpha \in J} \varpi_{-w_{0}\alpha})))$$

$$\simeq \operatorname{H}^{i}(\mathcal{B}, \mathcal{L}_{\mathcal{B}}((w^{I})^{-1} \bullet (-\sum_{\alpha \in J} \varpi_{-w_{0}\alpha}))) \quad \text{as } (w^{I})^{-1} \bullet (-\sum_{\alpha \in J} \varpi_{-w_{0}\alpha}) \in \Lambda_{P}$$

$$= 0 \quad \text{by [J, II.5.5]}$$

as  $-\sum_{\alpha\in J} \varpi_{-w_0\alpha}$  belongs to the closure of the bottom dominant alcove by the hypothesis that  $p\geq h-1$ . Likewise

$$\operatorname{Ext}_{\mathcal{P}}^{i}(\mathcal{L}_{\mathcal{P}}(\operatorname{hd}^{1}\hat{\nabla}_{P}(\lambda)), \mathcal{L}_{\mathcal{P}}(\operatorname{soc}^{1}\hat{\nabla}_{P}(\lambda))) = \operatorname{Ext}_{\mathcal{P}}^{i}(\mathcal{L}_{\mathcal{P}}(\sum_{\alpha \in J} (r_{\alpha} - n_{\alpha})\varpi_{\alpha}), \mathcal{O}_{\mathcal{P}}) \quad \text{by (2)}$$

$$\simeq \operatorname{H}^{i}(\mathcal{P}, \mathcal{L}_{\mathcal{P}}(\sum_{\alpha \in J} (n_{\alpha} - 1)\varpi_{\alpha}))$$

$$\simeq \delta_{i0}\nabla(\sum_{\alpha \in J} (n_{\alpha} - 1)\varpi_{\alpha}) = \delta_{i0}\nabla(2\rho_{P} - \sum_{\alpha \in J} \varpi_{\alpha}) \quad \text{by Kempf's vanishing [J, II.4.5]}.$$

(2.7) **Remark:** If  $\lambda = 0$  and  $p \ge h$ , we have from [K, 1.4] that all  $r_{\alpha} = 1$  to satisfy the assumption of (ii).

### References

- [AbK] Abe, N. and Kaneda, M., On the structure of parabolically induced  $G_1T$ -Verma modules, JIM Jussieu 14 Issue 01 (2015), 185-220
- [AK] Andersen, H.H. and Kaneda M., Loewy series of modules for the first Frobenius kernel in a reductive algebraic group, Proc. LMS (3) 59 (1989), 74–98
- [BK] Brion, M. and Kumar, S., Frobenius splitting Methods in Geometry and Representation Theory, PM 231, Boston etc. 2005 (Birkäuser)
- [GK] Gros, M. and Kaneda, M., Un scindage du morphisme de Frobenius quantique, to appear in Arkiv för Matematik, DOI: 10.1007/s11512-014-0205-8
- [J] Jantzen, J. C., Representations of Algebraic Groups, 2003 (American Math. Soc.)
- [K] Kaneda, M., Exceptional collections of sheaves on quadrics in positive characteristic, São Paulo Journal of Mathematical Sciences 8 (2014), 117-156
- [MR] Mehta, V.B. and Ramanathan, A., Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. Math. 122 (1985), 27–40