PDE session

The Brezis–Nirenberg phenomenon for fractional Laplacians

Alexander I. Nazarov

St.Petersburg Dept of Steklov Institute and St.Petersburg University,

Russia

Let m, s be two given real numbers, with $0 \leq s < m < \frac{n}{2}$. Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain. Denote by $2_m^* = \frac{2n}{n-2m}$ the critical Sobolev exponent for the embedding $W_2^m \hookrightarrow L_q$.

We study equations

$$(-\Delta)_D^m u = \lambda (-\Delta)_D^s u + |u|^{2_m^* - 2} u \quad \text{in} \quad \Omega, \tag{1}$$

$$(-\Delta)_N^m u = \lambda (-\Delta)_N^s u + |u|^{2_m^* - 2} u \quad \text{in} \quad \Omega.$$
⁽²⁾

,

Here fractional Laplacians $(-\Delta)_D^m$ and $(-\Delta)_N^m$ (Dirichlet and Navier, respectively) are self-adjoint operators defined by their quadratic forms:

$$Q_m^D[u] \equiv \int_{\Omega} (-\Delta)_D^m u \cdot u \, dx := \int_{\mathbb{R}^n} |\xi|^{2m} |\mathcal{F}[u]|^2 \, d\xi$$
$$Q_m^N[u] \equiv \int_{\Omega} (-\Delta)_N^m u \cdot u \, dx := \sum_{k \in \mathbb{N}} \lambda_k^m (u, \varphi_k)^2,$$

respectively. Here \mathcal{F} stands for the Fourier transform while λ_k and φ_k are eigenvalues and (normalized) eigenfunctions of conventional Dirichlet– Laplacian in Ω . The domains of quadratic forms satisfy $Dom(Q_m^D) = \widetilde{H}^m(\Omega) \subset Dom(Q_m^N)$, where $\widetilde{H}^m(\Omega) = \{u \in W_2^m(\mathbb{R}^n) : \operatorname{supp} u \subset \overline{\Omega}\}.$

Theorem. Let $s \ge 2m - \frac{n}{2}$. Then each of problems (1) and (2) has a nontrivial weak solution for arbitrarily small positive λ .

The case s = 0 and m integer or $m \in (0, 1)$ was considered earlier in a number of papers beginning with the celebrated paper of H. Brézis and L. Nirenberg, 1983 (for m = 1).

An important auxiliary result of independent interest is coincidence of sharp Sobolev constants for Navier and Dirichlet fractional Laplacians.

This talk is based on a joint papers with Roberta Musina, see [1], [2], [3].

Author was supported by RFBR grant 14-01-00534.

References

- [1] Musina R., Nazarov A. I., "Non-critical dimensions for critical problems involving fractional Laplacians", to appear in Rev. Matem. Iberoamericana.
- [2] Musina R., Nazarov A.I., "On fractional Laplacians–3", to appear in ESAIM: COCV.
- [3] Musina R., Nazarov A. I., "On the Sobolev and Hardy constants for the fractional Navier Laplacian", Nonlin. Anal. TMA, **121**. 2015. P.123-129.