
BRST of spinning particles and BV target space field theory

Spinning particles are free relativistic massless point particles moving along their Z2×Z2×. . .
graded worldine R1|N . We will be discussing N = 1, 2. Their positions are coordinates for the
target space manifold M :

X : R1|N →M.

As customary in graded geometry, the structure sheaf of the graded manifold R1|N is isomorphic
to

C∞(R)⊗ S•(R0|N ),

so:

X =
e

Xµ(τ) +
o

ψµi (τ)θ
i + . . . . (1)

We will not need higher polynomials. The superscripts denote the even or odd intrinsic parity.
The physical theory we are going to study is invariant under super-reparametrizations,

(τ, θ) 7→ (τ ′(τ), θ′(θ, τ)) that do not mix the parity; equivalently, we shall call them super-
diffeomorphisms of the line. The action functional, upon Berezinian integration1, is [Brink-Di
Vecchia-Howe ’76] [Sorokin review ’00]

SN=1[X,ψ, e, χ, P ] =

ˆ
R1

PµdX
µ + ψµdψ

µ −
(
e
P 2

2
+ χψµPµ

)
dτ . (2)

Therefore e, χ are Lagrange multipliers for the constraints P 2 = 0 = ψ · P .
BRST:

• In the action above there is implicit use of a canonical symplectic structure on

M
X,ψ

∼= T ∗N
X,dX

given by the Poisson brackets

{Xµ, Pν} = δµν , {ψµi , ψ
ν
j } = 2δijg

µν = {ψνj , ψ
µ
i }.

• Thus the action of Diff(R1|N ) lifted to M is Hamiltonian. It produces the Hamiltonian
functions

P 2, ψi · P.

• Moreover, the Hamiltonian vector fields give rise to a map Φ : M → LieDiff(R1|N )∗ and
the action of the Lie algebra on its dual and M is equivariant:

{Φg,Φh} = Φ[g,h],

{ψi · P,ψj · P} = 2δijP
2. (3)

• We are interested in the level set of the moment map Φ−1(0), although 0 is not a regular
value. We believe that this issue is solved by doing canonical quantization (see later).

1indeed the right object is

SN=1 = −
ˆ

dτdθ
DX∂τX

2E
where D is the superderivative of the line and E is the supereinbein.
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• In the ideal situation that 0 is regular, then, Φ−1(0)/Diff ≡M//Diff inherits a symplectic
structure [Marsden-Weinstein, symplectic reduction, Kirillov-Kostant-Soriau for coadjoint
orbits].

• Cranking the Koszul resolution, we can know the invariant functions C∞(Φ−1(0))Diff .

• For the invariant functions on M , we can rely on the fundamental theorem of BRST:

C∞(M//Diff) ∼= H0
Q(C). (4)

• We shall explain the RHS in the above statement, adapted to the case of super-reparametrization
invariance of the line.

– The cochains are

Cp,q := SpLieDiff∗[1]
c,γ,γ̄

⊗ SqLieDiff [−1]
b,β,β̄

⊗ C∞(M).

However the right cohomological degree is n = p − q, the ghost number (obtained by
subtracting the number of antighosts to the number of ghosts).

– The BRST charge is

QN=1 = cP 2 + γψ · P − γ2b (= Φ−1(0)ie
i + fij

keiej êk)

and by Poisson action (adjoint action via Poisson brackets) it increases the ghost num-
ber, as expected from a coboundary operator:

Q : Cn → Cn+1.

Canonical quantization. We are interested to move on to the first quantized setting,
where Poisson brackets on the smooth functions are replaced by commutators of operators of
a Hilbert/Fock space:

({−,−}, C∞(M)) =⇒
(
− i

ℏ
[−,−],O : H → H

)
.

A polarization must be chosen (correspondingly, a Lagrangian submanifold will be singled out).
For our ”ground state” |0⟩ we will always set

Pµ |0⟩ = 0 = ψµ1/2 |0⟩ , b |0⟩ = 0,

(where the notation 1/2 in superscript denotes the fact that half of the ψ’s become annihilators)
but for the Weyl algebra of the γ, β system we keep our options open. This gives rise to an extra
filtration labeled by the picture number.

1. cp1γp2βqF (X,ψ) ∈ Cp,qpic=0 with p = p1 + p2, which corresponds to the polarization β̄ |0⟩ =
0 = γ̄ |0⟩;

2. cpδ(q1)(γ)βq2F (X,ψ) ∈ Cp,qpic=1 with q = q1 + q2, for the polarization γ |0⟩ = 0 = γ̄ |0⟩. Note
that in this representation the polynomials in γ have been traded for (derivatives of) the
Dirac distribution in the same variable [Belopolsky] [Castellani-Catenacci-Grassi];

3. cp1δq(γ)δ(p2)(β)F (X,ψ) ∈ Cp,qpic=2 with p = p1 + p2 and the polarization given by γ |0⟩ = 0 =
β |0⟩.

We have been able to show the following [B.-Grassi-Huĺık-Sachs]:

Result 1 (N = 1 BRST cohomology). In the superform case, noting that

QN=1 = c□+ γ(d + d†)− γ2∂c,

the cohomology is (n ∈ N∗)

Hn
pic=0(C)

{̸
= ∅, n = 0, 1,

= ∅, otherwise.
(5)

When there is some cohomology, the latter is that of d+d† closed covariant multiforms(=functions
of M) which are not d + d† exact, or equivalently it corresponds to Dirac spinors. Furthermore,
Hn
pic=0(C) = Hn

pic=1(C).
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For results on the cohomology at negative ghost degree see [Getzler ’15]. Moreover, we cross-
checked our result using the Hilbert-Poincaré series. On our Fock space Vl graded by the ghost
degree (thus finite dimensional at each l), the Hilbert-Poincaré series reads:

P(q, s) :=
∑

(−1)ldimVk,l q
ksl, s cohomological ”fugacity”.

Fact: P(r, s) = (−1)lbk,l q
ksl where b are the Betti numbers of the ring. Therefore, this computes

a partition function. Then, with reference to (1):

ψ γ c
ghost number s 0 1 1

”scaling” number q 1 −1 −2
q sq−1 sq−2

Table 1: Assignments of fugacities to our algebra.

PN=1(q, s) =
(1− sq−2)(1 + q)D/2

1 + sq−1

s=1
= (1− q−1)(1 + q)D/2 (6)

counts the number of d.o.f.’s of the two sets of D/2-multiforms that are in BRST cohomology
(ghost degree 0 and 1). Note that from the get-go s is twisted by a negative sign, which amounts
to have a twisted partition function, and then set to the unit for clarity of exposition.

Result 2 (N = 2 BRST cohomology). Focusing on the picture zero sector,

QN=2 = c□+ ∂βd + γd† − γ∂β∂c,

and noting that there is a U(1)-charge R

R = ψ · ∂ψ + γ∂γ + β∂β , [Q,R] = 0,

which further filters Cnpic=0 =
⊕

r Cnpic=0,r, the cohomology is:

H0
pic=0,r(C)


Klein-Gordon, r = 0,

Maxwell (with auxiliary field), r=1 (see also [Dai-Huang-Siegel]),

EM with higher forms, r > 1

For picture 2 there holds H0
pic=2,r′(C) = H0

pic=0,r(C) (possibly after some shift of r by ±1).
This can be seen from two concurring arguments:

• By applying a Picture Changing Operator Y , defined to be:

Y : Cnpic=0,r → Cn
′

pic=1,r′ , [Q,Y ] = 0, Y ̸= [Q,−] .

In fact, since Y is a cocycle, it does not affect the cohomology;

• By applying a Hodge star operator defined by

⋆ : Cnpic=0,r
∼→ Cn

′

pic=2,r′ .

Several options for the isomorphism ⋆ are available. We could find one for which ⋆QN=2⋆ =
QN=2.

The same results hold for the cohomology at picture 1. However, in picture 1 there are sectors
inaccessible by PCOs, namely those with negative r < −1. Then, H0

pic=1,r<−1(C) is compatible
with Chern-Simons (flat connections).

BV in target space. We shall now see how BRST cohomology lends a free BV field theory in
the target space M . Then we will explain how to obtain an interacting one. This enhancement is
known already for bosonic strings [Zwiebach, Witten] and partially for superstrings [Sen], building
on a BV structure on the moduli space of punctured Riemann surfaces. Here, with worldlines, the
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multiproducts of a homotopy algebra are instead not granted to exist, and if they do, are they
connected by L∞ morphisms to those of YM theory? Recall that

µ3(A,A,A) ∝ [A, ∗[A,A]su(n)]su(n)

is the highest multiproduct in YM theory.

Observations:

• Taking for concreteness the cochains Cn1 in picture 0, note that(
C−1

)
C(X)β|0⟩

Q→ C0Aµ(X)ψµ |0⟩
ϕ(X)cβ |0⟩


Q→ C1A∗

µ(X)ψµ |0⟩
ϕ∗(X)γ |0⟩


Q→

(
C2

)
C∗(X)cγ|0⟩

. (7)

This is a cochain complex for Maxwell/Yang-Mills in BV. We already explained what the
cohomology in ghost degree zero is.

• There is a natural BV-pairing:
ˆ
T∗(N×LieDiff)

⟨0| (⋆ω)ω |0⟩ , ω ∈ Cn1 (8)

The integrand is the right object to integrate: a picture 2 top form of T ∗N = M . Further-
more, Q is self-adjoint w.r.t. the BV pairing.

Fact: A BV formulation of free YM (EM) is at hand:

ˆ
T∗(N×LieDiff)

⟨0| (⋆ω)Qω |0⟩ = SBVEM [A, ϕ,C,A∗, ϕ∗,��HHC∗]. (9)

In [B.-Grassi-Huĺık-Sachs] we presented 2 options for the interacting theory:

1. Promote Q ⇝ Q(ω) = Q0 + Q1(ω) with the understanding that Q(ω)β |0⟩ = ω |0⟩. This
operator-state correspondence map is just a surjection though.

Q(ω) =− c
(
p2 + p ·B +B · p−Gµνψ

µψ̄ν − ϕ̃
)
+ γΠ · ψ̄ + γ̄Π · ψ + C

− cγ̄ψ ·A∗ + cγψ̄ ·A∗ + γγ̄ϕ∗ + cγγ̄C∗ + γγ̄b , (10)

where Πµ = pµ + Aµ and ϕ̃ = ϕ + [p,B]. The ”background fields” B and Gµν do not
correspond to a state through the operator-state correspondence map. We have refrained
from substituting p with the corresponding partial derivative for clarity of exposition; however
this step must be performed. Then an associative, Q0-compatible 2-product can be defined
as

µ2(ω1, ω2) =
1

2
[Q(ω1), Q(ω2)].

Eventually Sfree+int is given by:

Sfree+int[ω] =

ˆ
T∗(N×LieDiff)

⟨0| (⋆βQ(ω))
(1
2
Q0 +

1

3!
Q1(ω)

)
Q(ω)β |0⟩ . (11)

Result 3. Sfree+int is an equivalent action to YM in BV formulation:
δSfree+int

δω = 0 ⇐⇒
BV YM e.o.m.’s hold.

See also [Meyer-Grigoriev-Sachs].

2. Another solution is the following:(
assume an homotopy
algebra on worldlines

)
↭

(
knowledge of the L3

structure of YM

)
In our article we have explicit formulas for the L∞-morphisms matching the two sides.

Comment: In an upcoming preprint we have worked out an interacting BV theory for N = 1
(Dirac spinors/de Rham closed and co-closed multiforms).
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