Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

Asymptotic properties of the Ceresa cycle

Date: 2021-11-10

Time: 13:15 - 14:15

Speaker

Robin de Jong

Abstract

When C is a smooth projective connected complex curve of genus g>1, the Ceresa cycle associated to C is the cycle C – [-1]_*C in the jacobian J of C. The Ceresa cycle is homologically trivial and hence, by an Abel-Jacobi type construction due to Griffiths, it gives rise to a point in a higher intermediate jacobian associated to J. The Griffiths Abel-Jacobi construction varies well in families and gives rise to a “normal function” on the moduli space of curves M_g. This normal function in turn gives rise to an interesting smoothly metrized holomorphic line bundle on M_g, called the Hain-Reed line bundle. We study the degeneration behavior of this metrized line bundle near the boundary of M_g in the Deligne-Mumford compactification, and answer a question of Hain. Following Hain we discuss a relation with slope inequalities for families of curves. Joint work with Farbod Shokrieh.