Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

Gernot Akemann: Complex normal, symmetric or self-dual random matrices:Approximation by a 2d Coulomb gas and analytic…

Date: 2024-09-26

Time: 14:00 - 15:00

Speaker
Gernot Akemann

Abstract
It has been conjectured that among all 38 classes of non-Hermitian random matrices, only 3 different local bulk statistics exist. This conjecture is based on numerically generated nearest neighbor spacing distributions. The simplest representatives for these 3 bulk statistics are complex Ginibre matrices (class A), complex symmetric (class AI\(^\dagger\)), and complex self-dual random matrices (class AII\(^\dagger\)). While class A is very well understood as a determinantal point process, we are only beginning to explore the latter two. 

First, based on numerics, I will show that both nearest and next-to-nearest neighbor spacing distributions of classes AI\(^\dagger\) and AII\(^\dagger\) can be well approximated by a 2-dimensional Coulomb gas at inverse temperature \(\beta=1.4\) and \(\beta=2.6\), respectively. For class A, this map is exact with \(\beta=2\). 

Second, I will present the first analytic results for the expectation value of two characteristic polynomials in classes AI\(^\dagger\) and AII\(^\dagger\). This includes results at finite matrix size as well as global and local edge and bulk asymptotics.