Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

Local-global principles for homogeneous spaces over some two-dimensional geometric global fields

Date: 2021-03-31

Time: 17:00 - 18:00

Speaker
Diego Izquierdo (École Polytechnique, Paris)

Abstract
Over number fields, according to work of Sansuc and Borovoi, the Brauer-Manin obstruction is the only obstruction to the local-global principle for homogeneous spaces under connected linear groups with connected stabilizers. In the last years, there has been a growing interest in the local-global principle over other fields coming from geometry. Interesting examples of such fields are function fields of curves over a complete discretely valued field, and Laurent series fields in two variables. In this talk, I will report on a recent work with Giancarlo Lucchini Arteche, in which we study the obstructions to the local-global principle for homogeneous spaces with connected stabilizers over such fields. We will in particular see that, contrary to what happens over number fields, the Brauer-Manin obstruction is not enough to explain the failures to the local-global principle. If time permits, we will then discuss how one can solve this problem by combining the Brauer-Manin obstruction with descent obstructions.