Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

Moduli spaces of stable objects in the Kuznetsov component of cubic threefolds

Date: 2021-11-16

Time: 13:30 - 14:30

Speaker

Soheyla Feyzbakhsh (Online)

Abstract

We will first discuss a general criterion that ensures a fractional Calabi-Yau category of dimension less than or equal to 2 admits a unique Serre-invariant stability condition up to the action of the universal cover of GL+(2, R). This result can be applied to a certain triangulated subcategory (called the Kuznetsov component) of the bounded derived category of coherent sheaves on a cubic threefold. As an application, we will prove (i) a categorical version of the Torelli theorem holds for cubic threefolds, and (ii) the moduli space of Ulrich bundles of fixed rank r greater than or equal to 2 on a cubic threefold is irreducible. The talk is based on joint work with Laura Pertusi and a group project with A. Bayer, S.V. Beentjes, G. Hein, D. Martinelli, F. Rezaee and B. Schmidt.