Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

Kristian Moring/Leah Schätzler: Higher integrability for singular doubly nonlinear systems

Date: 2024-05-22

Time: 10:30 - 11:00

Speaker
Kristian Moring, University of Duisburg-Essen; Leah Schätzler, University of Salzburg

Abstract

We present a local higher integrability result for the spatial gradient of weak solutions \(u \colon \Omega_T \to \mathbb{R}^N\) to doubly nonlinear parabolic systems whose prototype is \begin{equation*} \partial_t \left(|u|^{q-1}u \right) -\mathrm{div} \left( |Du|^{p-2} Du \right) = \mathrm{div}\left( |F|^{p-2} F \right) \quad \text{ in } \Omega_T := \Omega \times (0,T) \end{equation*} with parameters \(p>1\) and \(q>0\) and an open set \(\Omega\subset\mathbb{R}^n\). We are concerned with the range \(q>1\), i.e.~the singular case with respect to the porous medium type nonlinearity, and \(p>\frac{n(q+1)}{n+q+1}\). A key ingredient in the proof is an intrinsic geometry that takes both the solution \(u\) and its spatial gradient \(Du\) into account.

The talk is based on joint work with Christoph Scheven.