Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

Refined Riemann-Roch for degenerations of Calabi-Yau manifolds and a mirror symmetry-conjecture

Date: 2021-11-30

Time: 13:15 - 14:15

Speaker

Dennis Eriksson

Abstract

In recent joint work (w. Gerard Freixas and Christophe Mourougane) we proved a mirror symmetry-statement for genus one Gromov-Witten invariants of Calabi-Yau hypersurfaces in projective space. The original conjecture was formulated by string theorists. A central tool was a reformulation of the conjecture, using an metric version of the Riemann-Roch.

In this talk I will focus on a formulation of a more mathematical version of the conjecture, together with a list of examples where it is verified. There are two main ingredients, namely the limit Hodge structure of a maximally degenerate family, and a lifting of the (codimension 1)-version of the Grothendieck-Riemann-Roch theorem to the level of line bundles. The latter ingredient is ongoing joint work Gerard Freixas.