Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

Michael Strunk: Gradient regularity for solutions to doubly nonlinear parabolic partial differential equations

Date: 2024-05-21

Time: 16:30 - 17:00

Speaker
Michael Strunk, University of Salzburg

Abstract

In this talk, we consider doubly nonlinear parabolic equations of the type

\begin{equation*}\partial_t u^q – \mathrm{div} A(x,t,Du) = 0\qquad\mbox{in } \Omega_T:=\Omega\times(0,T),\end{equation*}with \(q>0\) and \(p>1\), where the vector field \(A:\Omega_T\times\mathbb{R}^n\to\mathbb{R}^n\) satisfies the following \(p\)-growth structure conditions\begin{align*}\left\{\begin{array}{l}| A(x,t,\xi)| + (\mu^2 + |\xi|^2 )^{\frac{1}{2}}|\partial_\xi A(x,t,\xi)| \leq C_1 (\mu^2 + |\xi |^{2})^{\frac{p-1}{2}} \\[3pt]\langle \partial_{\xi}A(x,t,\xi)\eta, \eta \rangle \geq C_2 (\mu^2 + |\xi|^2 )^{\frac{p-2}{2}}|\eta|^2 \\[3pt]|\partial_x A_i (x,t,\xi)| \leq C_3 ( \mu^2 + |\xi|^2)^{\frac{p-1}{2}}\end{array}\right. \label{voraussetzungen}\end{align*}for a.e. \((x,t) \in \Omega_T\),\(i\in\{1,…,n\}\),\(\eta,\xi \in\mathbb{R}^n\),\(\mu \in [0,1]\), with positive structural constants \(C_1, C_2, C_3\). Our main result establishes the local Hölder continuity of the gradient of non-negative weak solutions in the super-critical fast diffusion regime \(0 < p-1 < q < \frac{n(p-1)}{(n-p)_+}.\) Additionally, we obtain a local bound for the spatial gradient.