Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

Tackling L∞ eigenvalue problems with convex analysis

Date: 2022-09-22

Time: 15:00 - 16:00

Speaker

Leon Bungert

Abstract

I will characterize the L∞ eigenvalue problem which is solved by stationary points of the Rayleigh quotient ∥∇u∥L∞/∥u∥∞ and relate it to a divergence-form PDE, similarly to what is known for Lp eigenvalue problems and the p-Laplacian for p < ∞. Contrary to most existing methods, which study L∞-problems as limits of Lp-problems for large values of p, I shall present a novel framework for analyzing the limiting problem directly using convex analysis and measure theory. Our results rely on a novel fine characterization of the subdifferential of the Lipschitz-constant-functional. I also study a dual Rayleigh quotient whose minimizers solve an optimal transport problem associated to a generalized Kantorovich--Rubinstein norm.

This is joint work with Yury Korolev and based on the article (https://arxiv.org/abs/2107.12117).