Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

Mikhail Shkolnikov: Hyperbolic amoebas, spherical coamoebas and radial degenerations

Date: 2024-06-27

Time: 11:00 - 12:00

Speaker

Mikhail Shkolnikov, International Center for Mathematical Sciences

Abstract

Hyperbolic amoebas are images of complex subvarieties in PSL(2,C) under the phase-forgetting map, a quotient by the maximal compact subgroup PSU(2). In the joint work with Grigory Mikhalkin, we have shown that tropical limits of hyperbolic amoebas of curves are given by unions of spheres and geodesic segments. In my talk, I will prove that the tropical limit of hyperbolic amoebas of surfaces is a complement to a geometric ball. This result motivates the use of an enhanced version of tropicalization, which is performed via rescaling without forgetting the phase. In collaboration with Peter Petrov, we have realized that such a procedure makes sense in any dimension, and can be seen as a radial degeneration in the projective space or a quadric. The corresponding limits appear to be similar to buildings in symplectic field theory, with spherical coamoebas inside PSU(2) playing a special role. I will conclude by discussing the topology of generic radial degenerations following the work in progress with Ilia Zharkov.