Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

The Chow rings of moduli spaces of elliptic surfaces

Date: 2021-11-16

Time: 11:00 - 12:00

Speaker

Samir Canning

Abstract

For each nonnegative integer N, Miranda constructed a coarse moduli space of elliptic surfaces with section over the projective line with fundamental invariant N. I will explain how to compute the Chow rings with rational coefficients of these moduli spaces when N is at least 2. The Chow rings exhibit many properties analogous to those expected for the tautological ring of the moduli space of curves: they satisfy analogues of Faber’s conjectures, and they exhibit a stability property as N goes to infinity. When N=2, these elliptic surfaces are K3 surfaces polarized by a hyperbolic lattice. I will explain how the computation of the Chow ring confirms a special case of a conjecture of Oprea and Pandharipande on the structure of the tautological rings of moduli spaces of lattice polarized K3 surfaces. This is joint work with Bochao Kong.