Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

The Disc-structure space

Date: 2022-02-10

Time: 14:15 - 16:00

Speaker

Manuel Krannich

Abstract

The classical approach to studying the enriched category of manifolds and their diffeomorphisms is to first compare it to a simplified category of block-manifolds and then compare the latter to the category of Poincaré complexes. The information lost in each of these steps is encoded in certain structure spaces that are expressible—in a certain range—in terms of K- and L-theory.
More recent developments related to manifold calculus and factorisation homology suggest a different approach, namely to compare the category of manifolds to a variant of the derived category of modules over the little d-discs operad. Again, this amounts to studying certain structure spaces that encode the difference: the Disc-structure spaces.
In this talk, I will explain the above and describe aspects of joint work with A. Kupers in which we show that, in most cases, these Disc-structure spaces are nontrivial infinite loop spaces that depend only little on the underlying manifolds.