Scam Alert

Scam Alert

Please verify and be careful about any phishing and scam attempts from external companies.
All conferences and research programs at IML are free of charge.
We will not ask you for any payments regarding your accommodation or travel arrangements

Workshop: Well-posedness of stochastic continuity equations on Riemannian manifolds, Luca Galimberti

Date: 2023-11-30

Time: 11:15 - 12:15

Speaker

Luca Galimberti – King’s College London

Abstract

We analyze continuity equations with Stratonovich stochasticity on a smooth closed and compact Riemannian manifold \(M\) with metric \(h\). The velocity field \(u\) is perturbed by Gaussian noise terms \(\dot W_1(t),\ldots,\dot W_N(t)\) driven by smooth spatially dependent vector fields \(a_1(x),\ldots,a_N(x)\) on \(M\). The velocity \(u\) belongs to \(L^1_t W^{1,2}_x\) with \(\mbox{div}_h\, u\) bounded in \(L^p_{t,x}\) for \(p>d+2\), where \(d\) is the dimension of \(M\) (we do not assume \(\mbox{div}_h\, u \in L^\infty_{t,x}\)). We show that by carefully choosing the noise vector fields \(a_i\) (and the number \(N\) of them), the initial-value problem is well-posed in the class of weak \(L^2\) solutions, although the problem can be ill-posed in the deterministic case because of concentration effects. The proof of this “regularization by noise” result reveals a link between the nonlinear structure of the underlying domain \(M\) and the noise, a link that is somewhat hidden in the Euclidean case (\(a_i\) constant). To our knowledge, this is the first instance of “regularization by noise” phenomena beyond \(\mathbb R^d\).  The proof is based on an a priori estimate in \(L^2\), which is obtained by a duality method, and a weak compactness argument.

This is a joint work with Kenneth Karlsen (UiO).